Home Bookmarks Papers Blog

Edge Estimation with Independent Set Oracles $\renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}}$

Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian, and Makrand Sinha.
We study the problem of estimating the number of edges in a graph with access to only an independent set oracle. Independent set queries draw motivation from group testing and have applications to the complexity of decision versus counting problems. We give two algorithms to estimate the number of edges in an $n$-vertex graph: (i) using $\polylog(n)$ bipartite independent set queries, and (ii) using ${n}^{2/3}\cdot \polylog(n)$ independent set queries.
Last modified: Fri 2018-02-02 22:35:29 UTC 2018 by Sariel Har-Peled