QUALIFYING EXAMINATION THEORETICAL COMPUTER SCIENCE THURSDAY, MARCH 17, 2015

PART II: AUTOMATA AND COMPLEXITY

|--|

Problem	Maximum Points	Points Earned	Grader
1	25		
2	25		
3	25		
4	25		
Total	100		

Instructions:

- 1. This is a closed book exam.
- 2. The exam is from 10:30am–6:30pm and has four problems of 25 points each. Read all the problems carefully to see the order in which you want to tackle them.
- 3. Write clearly and concisely. You may appeal to some standard algorithms/facts from text books unless the problem explicitly asks for a proof of that fact or the details of that algorithm.
- 4. If you cannot solve a problem, to get partial credit write down your main idea/approach in a clear and concise way. For example you can obtain a solution assuming a clearly stated lemma that you believe should be true but cannot prove during the exam. However, please do not write down a laundry list of half baked ideas just to get partial credit.

May the force be with you.

Problem 1: Let A and B be two DFAs with n states each. Prove that if $L(A) \neq L(B)$ then there is a string w of length at most 2n that belongs to the symmetric difference of L(A) and L(B).

Problem 2: Recall that Mahaney's theorem states that if L is sparse ¹ and NPhard then $\mathbf{P} = \mathbf{NP}$. This observation can be strengthened under the *Exponential Time Hypothesis* (ETH) as follows.

The ETH states that there exists c > 0 such that $3SAT \notin DTIME(2^{cn})$. We will say that L is almost sparse iff $\forall \epsilon > 0 \exists n_{\epsilon} \forall n \geq n_{\epsilon}$. $|L \cap \{0,1\}^n| \leq 2^{n^{\epsilon}}$. Prove that if ETH holds, and L is almost sparse and **NP**-hard then $\mathbf{P} = \mathbf{NP}$.

Problem 3: This problem is related to average case hardness against circuits. We say that a boolean function $g : \{0,1\}^* \to \{0,1\}$ is (σ, ϵ) -inapproximable if for all (non-uniform) circuit families $\{C_k\}_{k\in\mathbb{N}}$ of size at most $\sigma(k)$, for all sufficiently large k,

$$\Pr_{x \leftarrow \{0,1\}^k} [C_k(x) = g(x)] \le \epsilon(k).$$

Let $f : \{0,1\}^* \to \{0,1\}$ be a boolean function. Then we define $F : \{0,1\}^* \to \{0,1\}$ and $G : \{0,1\}^* \to \{0,1\}$ as follows.

For each $n \in \mathbb{N}$, let $F(x_1, \ldots, x_n, r) = \langle \alpha, r \rangle$, where $x_i, r \in \{0, 1\}^n$, and $\alpha := f(x_1) \cdots f(x_n) \in \{0, 1\}^n$. Here $\langle \cdot, \cdot \rangle$ stands for inner product in $GF(2)^n$ (i.e., inner product modulo 2). (If the input string is not of length of the form $n^2 + n$, then it is truncated to the longest such length.)

G is defined as $G(x) = F(x, 1^n)$, where $|x| = n^2$. (If the input string is not of length of the form n^2 , then it is truncated to the longest such length.)

1. Suppose F is a (σ, ϵ) -inapproximable function. Show that G is (σ', ϵ') -inapproximable for as large a value of σ' and as small a value of ϵ' as you can.

(It is not important to fine-tune the parameters.)

[Hint: Suppose you are given two oracles A and B as follows. Oracle A, on input $x \in \{0,1\}^{n^2}$, returns G(x). Oracle B, when invoked (without any input), returns (z, f(z)) for a random $z \leftarrow \{0,1\}^n$. How can you use them to compute F? What happens if A is only approximately correct? Can you avoid the need for B?]

2. Conversely, suppose G is a (σ, ϵ) -inapproximable function. Then show that F is (σ', ϵ') -inapproximable for as large a value of σ' and as small a value of ϵ' as

¹L is sparse if there is a polynomial p(n) and n_0 such that for all $n > n_0$, $L \cap \{0, 1\}^n \le p(n)$.

you can. [Hint: Again, start with oracles A and B, where now, A computes

F and B is as before.]

Problem 4:

- 1. Show that for each L in $DSPACE(n^2)$ there is a function f, computable in $O(n^2)$ time, such that for all $x \in \{0, 1\}^*$, $x \in L$ iff $f(x) \in U$. (In other words, f is a reduction of L to U.)
- 2. Using (a), or otherwise, show that $DSPACE(n^2) \neq P$. [Hint: Argue that if $DSPACE(n^2) = P$, then P would collapse somewhat.]