
Qualifying Examination
Theoretical Computer Science

Thursday, March 17, 2015

Part II: Automata and Complexity

Name

Problem Maximum Points Points Earned Grader

1 25

2 25

3 25

4 25

Total 100
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Instructions:

1. This is a closed book exam.

2. The exam is from 10:30am–6:30pm and has four problems of 25 points each.
Read all the problems carefully to see the order in which you want to tackle
them.

3. Write clearly and concisely. You may appeal to some standard algorithms/facts
from text books unless the problem explicitly asks for a proof of that fact or
the details of that algorithm.

4. If you cannot solve a problem, to get partial credit write down your main
idea/approach in a clear and concise way. For example you can obtain a
solution assuming a clearly stated lemma that you believe should be true but
cannot prove during the exam. However, please do not write down a laundry
list of half baked ideas just to get partial credit.

May the force be with you.
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Problem 1: Let A and B be two DFAs with n states each. Prove that if
L(A) 6= L(B) then there is a string w of length at most 2n that belongs to the
symmetric difference of L(A) and L(B).

Problem 2: Recall that Mahaney’s theorem states that if L is sparse 1 and NP-
hard then P = NP. This observation can be strengthened under the Exponential
Time Hypothesis (ETH) as follows.

The ETH states that there exists c > 0 such that 3SAT 6∈ DTIME(2cn). We
will say that L is almost sparse iff ∀ε > 0∃nε∀n ≥ nε. |L ∩ {0, 1}n| ≤ 2n

ε
. Prove

that if ETH holds, and L is almost sparse and NP-hard then P = NP.

Problem 3: This problem is related to average case hardness against circuits.
We say that a boolean function g : {0, 1}∗ → {0, 1} is (σ, ε)-inapproximable if for all
(non-uniform) circuit families {Ck}k∈N of size at most σ(k), for all sufficiently large
k,

Pr
x←{0,1}k

[Ck(x) = g(x)] ≤ ε(k).

Let f : {0, 1}∗ → {0, 1} be a boolean function. Then we define F : {0, 1}∗ →
{0, 1} and G : {0, 1}∗ → {0, 1} as follows.

For each n ∈ N, let F (x1, . . . , xn, r) = 〈α, r〉, where xi, r ∈ {0, 1}n, and α :=
f(x1) · · · f(xn) ∈ {0, 1}n. Here 〈·, ·〉 stands for inner product in GF (2)n (i.e., inner
product modulo 2). (If the input string is not of length of the form n2 + n, then it
is truncated to the longest such length.)

G is defined as G(x) = F (x, 1n), where |x| = n2. (If the input string is not of
length of the form n2, then it is truncated to the longest such length.)

1. Suppose F is a (σ, ε)-inapproximable function. Show thatG is (σ′, ε′)-inapproximable
for as large a value of σ′ and as small a value of ε′ as you can.

(It is not important to fine-tune the parameters.)

[Hint: Suppose you are given two oracles A and B as follows. Oracle A, on
input x ∈ {0, 1}n2

, returns G(x). Oracle B, when invoked (without any input),
returns (z, f(z)) for a random z ← {0, 1}n. How can you use them to compute
F? What happens if A is only approximately correct? Can you avoid the need
for B?]

2. Conversely, suppose G is a (σ, ε)-inapproximable function. Then show that F
is (σ′, ε′)-inapproximable for as large a value of σ′ and as small a value of ε′ as

1L is sparse if there is a polynomial p(n) and n0 such that for all n > n0, L ∩ {0, 1}n ≤ p(n).
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you can. [Hint: Again, start with oracles A and B, where now, A computes

F and B is as before.]

Problem 4:

1. Show that for each L in DSPACE(n2) there is a function f , computable in
O(n2) time, such that for all x ∈ {0, 1}∗, x ∈ L iff f(x) ∈ U . (In other words,
f is a reduction of L to U .)

2. Using (a), or otherwise, show that DSPACE(n2) 6= P . [Hint: Argue that if
DSPACE(n2) = P , then P would collapse somewhat.]
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