Required Problems

1. We wish to compress a sequence of independent, identically distributed random variables X_1, X_2, \ldots. Each X_j takes on one of n values. The ith value occurs with probability p_i, where $p_1 \geq p_2 \geq \ldots \geq p_n$. The result is compressed as follows. Set $T_i = \sum_{j=1}^{i-1} p_j$, and let the ith codeword be the first $\lceil \log_2(1/p_i) \rceil$ bits of T_i. Start with an empty string, and consider X_j in order. If X_j takes on the ith value, append the ith codeword to the end of the string.

 (A) Show that no codeword is the prefix of any other codeword.
 (B) Let Z be the average number of bits appended for each random variable X_j. Show that $H(X_j) \leq z \leq H(X_j) + 1$.

2. Arithmetic coding is a standard compression method. In the case when the string to be compressed is a sequence of biased coin flips, it can be described as follows. Suppose that we have a sequence of bits $X = (X_1, X_2, \ldots, X_n)$, where each X_i is independently 0 with probability p and 1 with probability $1-p$. The sequences can be ordered lexicographically, so for $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$, we say that $x < y$ if $x_i = 0$ and $y_i = 1$ in the first coordinate i such that $x_i \neq y_i$. If $z(x)$ is the number of zeroes in the string x, then define $p(x) = p^{z(x)}(1-p)^{n-z(x)}$, and

 $$q(x) = \sum_{y < x} p(y).$$

 (A) Suppose we are given $X = (X_1, X_2, \ldots, X_n)$. Explain how to compute $q(X)$ in time $O(n)$ (assume that any reasonable operation on real numbers takes constant time).
 (B) Argue that the intervals $[q(x), q(x) + p(x)]$ are disjoint subintervals of $[0,1)$.
 (C) Given (A) and (B), the sequence X can be represented by any point in the interval $I(X) = [q(X), q(X) + p(X)]$. Show that we can choose a codeword in $I(X)$ with $\lceil \log(1/p(X)) \rceil + 1$ binary decimal digits to represent X in such a way that no codeword is the prefix of any other codeword.
 (D) Given a codeword chosen as in (C), explain how to decompress it to determine the corresponding sequence (X_1, X_2, \ldots, X_n).
 (E) Using the Chernoff inequality, argue that $\log(1/p(X))$ is close to $nH(p)$ with high probability. Thus, this approach yields an effective compression scheme.

(a) Let \(S = \sum_{i=1}^{10} 1/i^2 \). Consider a random variable \(X \) such that \(\Pr[X = i] = 1/(Si^2) \), for \(i = 1, \ldots, 10 \). Compute \(\mathbb{H}(X) \).

(b) Let \(S = \sum_{i=1}^{10} 1/i^3 \). Consider a random variable \(X \) such that \(\Pr[X = i] = 1/(Si^3) \), for \(i = 1, \ldots, 10 \). Compute \(\mathbb{H}(X) \).

(c) Let \(S(\alpha) = \sum_{i=1}^{10} 1/i^\alpha \), for \(\alpha > 1 \). Consider a random variable \(X \) such that \(\Pr[X = i] = 1/(S(\alpha)i^\alpha) \), for \(i = 1, \ldots, 10 \). Prove that \(\mathbb{H}(X) \) is either increasing or decreasing as a function of \(\alpha \) (you can assume that \(\alpha \) is an integer).

4. Consider an \(n \)-sided die, where the \(i \)th face comes up with probability \(p_i \). Show that the entropy of a die roll is maximized when each face comes up with equal probability \(1/n \).

5. The conditional entropy \(\mathbb{H}(Y|X) \) is defined by

\[
\mathbb{H}(Y|X) = \sum_{x,y} \Pr[(X = x) \cap (Y = y)] \log \frac{1}{\Pr[Y = y|X = x]}.
\]

If \(Z = (X, Y) \), prove that

\[
\mathbb{H}(Z) = \mathbb{H}(X) + \mathbb{H}(Y|X).
\]

6. We have shown that we can extract, on average, at least \(\lfloor \log m \rfloor - 1 \) independent, unbiased bits from a number chosen uniformly at random from \(\{0, \ldots, m-1\} \). It follows that if we have \(k \) numbers chosen independently and uniformly at random from \(\{0, \ldots, m-1\} \) then we can extract, on average, at least \(k \lfloor \log m \rfloor - k \) independent, unbiased bits from them. Give a better procedure that extracts, on average, at least \(k \lfloor \log m \rfloor - 1 \) independent, unbiased bits from these numbers.

7. Assume you have a (valid) prefix code with \(n \) codewords, where the \(i \)th codeword is made out of \(\ell_i \) bits. Prove that

\[
\sum_{i=1}^{n} \frac{1}{2^{\ell_i}} \leq 1.
\]