This is a closed-book, closed-notes, open-brain exam. If you brought anything with you besides writing instruments and your handwritten 8\(\frac{1}{2}\)" × 11" cheat sheet, please leave it at the front of the classroom.

Print your name, netid, and alias in the boxes above. Print your name at the top of every page (in case the staple falls out!).

You should answer all the questions on the exam.

The last few pages of this booklet are blank. Use that for a scratch paper. Please let us know if you need more paper.

If your cheat sheet is not hand written by yourself, or it is photocopied, please do not use it and leave it in front of the classroom.

Submit your cheat sheet together with your exam. An exam without your cheat sheet attached to it will not be checked.

If you are NOT using a cheat sheet you should indicate it in large friendly letters on this page.

There are 4 questions on the exam. Each question is worth 25 points.

Answers containing only the expression: “I dont know”, will get 20% of the points of the question. If you write anything else, it would be ignored. Overall, points given for “I dont know” will not exceed 10 points.

Write your exam using a pen not a pencil.

Time limit: 75 minutes.

Relax. Breathe. This is just an easy, silly and stupid midterm.
1. NP Completeness.
 [25 Points]
 Prove that the following problem is NP-Complete.

 Problem: Monotone Satisfiability

 Instance: A CNF formula \(F \) over \(n \) variables \(x_1, \ldots, x_n \), where NO variable appears in negation. And a parameter \(k \).

 Question: Is there a satisfying assignment to \(F \), such that at most \(k \) variables are assigned value 1, and all other variables are assigned value 0.

 As a concrete example, \(F = (x_1 \lor x_2 \lor x_3)(x_1 \lor x_4) \). The formula \(F = (\overline{x_1} \lor x_3) \) is of course NOT a legal input for Monotone Satisfiability since it contains negation. Observe that it easy to satisfy a monotone formula, as you can assign all variables the value 1. Here, however, we look for the assignment with minimum number of 1s (or with at most \(k \) trues).

2. Maximum matching
 [25 Points]
 Given a graph \(G \) with \(n \) vertices and \(m \) edges, a matching \(M \subseteq E(G) \) is a set of edges such that no two edges of \(M \) share an endpoint. A natural question is to find a matching of \(M \) of maximum size. Provide a simple algorithm that outputs a matching set \(X \), such that \(|X| \geq \text{opt}/2 \), where \(\text{opt} \) is the size of the maximum size matching in \(G \). How fast is your algorithm?

 Prove that your algorithm provides the required approximation.

3. Majority tree
 [25 Points]
 Consider a uniform rooted tree of height \(h \) (every leaf is at distance \(h \) from the root). The root, as well as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node returns the value returned by the majority of its children. The evaluation problem consists of determining the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

 Consider the recursive randomized algorithm \(\text{EvalTree} \) that evaluates two subtrees of the root chosen at random. If the values returned disagree, it proceeds to evaluate the third sub-tree. If they agree, it returns the value they agree on.

 (A) [10 Points] For a node \(v \) in this tree, \(\text{EvalTree} \) performs either two or three recursive calls on its children. In the worst case, what is the probability that \(\text{EvalTree} \) performs only two recursive calls?

 Let denote this probability by \(\alpha \).

 (B) [10 Points] Let \(T(h) \) denote the expected time to evaluate a tree of height \(h \) by \(\text{EvalTree} \) (this is just the expected number of leafs evaluated by \(\text{EvalTree} \)). Give a recurrence that bounds \(T(h) \) exactly (as a function of \(h \) and \(\alpha \) and \(T(h-1) \)).

 (C) [5 Points] What is the expected number of leafs that would be read by \(\text{EvalTree} \) if executed on a tree that has \(n \) leaves (that is \(n = 3^h \))?
4. **Maximum weight independent set.**

[25 Points]

You are given a tree T defined over n nodes. Every node $v \in V(T)$ has an associated weight $c(v) \geq 0$ with it. Provide an algorithm, as fast as possible, that computes the independent set of maximum weight in T. A weight of a set of vertices is just the total weight of its vertices.

What is the running time of your algorithm? Provide a pseudo-code for your algorithm.