Required Problems

1. [10 Points]

 (a) [1 Points] With path compression and union by rank, during the lifetime of a Union-Find data-structure, how many elements would have rank equal to $\lfloor \lg n - 5 \rfloor$, where there are n elements stored in the data-structure?

 (b) [1 Points] Same question, for rank $\lfloor (\lg n)/2 \rfloor$.

 (c) [2 Points] Prove that in a set of n elements, a sequence of n consecutive FIND operations take $O(n)$ time in total.

 (d) [1 Points] (Based on CLRS 21.3-2)
 Write a nonrecursive version of FIND with path compression.

 (e) [3 Points] Show that any sequence of m MAKESET, FIND, and UNION operations, where all the UNION operations appear before any of the FIND operations, takes only $O(m)$ time if both path compression and union by rank are used.

 (f) [2 Points] What happens in the same situation if only the path compression is used?

2. [10 Points] Off-line Minimum

 (Based on CLRS 21-1)
 The off-line minimum problem asks us to maintain a dynamic set T of elements from the domain $\{1, 2, \ldots, n\}$ under the operations INSERT and EXTRACT-MIN. We are given a sequence S of n INSERT and m EXTRACT-MIN calls, where each key in $\{1, 2, \ldots, n\}$ is inserted exactly once. We wish to determine which key is returned by each EXTRACT-MIN call. Specifically, we wish to fill in an array $extracted[1 \ldots m]$, where for $i = 1, 2, \ldots, m$, $extracted[i]$ is the key returned by the ith EXTRACT-MIN call. The problem is “off-line” in the sense that we are allowed to process the entire sequence S before determining any of the returned keys.
(a) [2 Points]
In the following instance of the off-line minimum problem, each INSERT is represented by a number and each EXTRACT-MIN is represented by the letter E:

\[4, 8, E, 3, E, 9, 2, 6, E, E, 1, 7, E, 5.\]

Fill in the correct values in the extracted array.

(b) [4 Points]
To develop an algorithm for this problem, we break the sequence \(S\) into homogeneous subsequences. That is, we represent \(S\) by \(I_1, E, I_2, E, I_3, \ldots, I_m, E, I_{m+1}\), where each \(E\) represents a single EXTRACT-MIN call and each \(I_j\) represents a (possibly empty) sequence of INSERT calls. For each subsequence \(I_j\), we initially place the keys inserted by these operations into a set \(K_j\), which is empty if \(I_j\) is empty. We then do the following.

\begin{verbatim}
Off-Line-Minimum(m,n)
 1 for i ← 1 to n
 2 do determine j such that i ∈ K_j
 3 if j ≠ m + 1
 4 then extracted[j] ← i
 5 let l be the smallest value greater than j for which set K_l exists
 6 K_l ← K_j ∪ K_l, destroying K_j
 7 return extracted
\end{verbatim}

Argue that the array \(extracted\) returned by Off-Line-Minimum is correct.

(c) [4 Points]
Describe how to implement Off-Line-Minimum efficiently with a disjoint-set data structure. Give a tight bound on the worst-case running time of your implementation.

3. [10 Points] Tarjan’s Off-Line Least-Common-Ancestors Algorithm
(Based on CLRS 21-3)
The least common ancestor of two nodes \(u\) and \(v\) in a rooted tree \(T\) is the node \(w\) that is an ancestor of both \(u\) and \(v\) and that has the greatest depth in \(T\). In the off-line least-common-ancestors problem, we are given a rooted tree \(T\) and an arbitrary set \(P = \{\{u, v\}\}\) of unordered pairs of nodes in \(T\), and we wish to determine the least common ancestor of each pair in \(P\).

To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk of \(T\) with the initial call LCA(root[\(T\)]). Each node is assumed to be colored WHITE prior to the walk.
LCA(u)
1 MAKESET(u)
2 \textit{ancestor}[\textit{FIND}(u)] \leftarrow u
3 \textbf{for} each child v of u in T
4 \textbf{do} LCA(v)
5 UNION(u, v)
6 \textit{ancestor}[\textit{FIND}(u)] \leftarrow u
7 \textit{color}[u] \leftarrow \textsc{black}
8 \textbf{for} each node v such that $\{u, v\} \in P$
9 \textbf{do if} \textit{color}[v] = \textsc{black}
10 \textbf{then} print “The least common ancestor of” u “and” v “is”\textit{ancestor}[\textit{FIND}(v)]

(a) \textbf{[2 Points]} Argue that line 10 is executed exactly once for each pair $\{u, v\} \in P$.

(b) \textbf{[2 Points]} Argue that at the time of the call LCA(u), the number of sets in the disjoint-set data structure is equal to the depth of u in T.

(c) \textbf{[3 Points]} Prove that LCA correctly prints the least common ancestor of u and v for each pair $\{u, v\} \in P$.

(d) \textbf{[3 Points]} Analyze the running time of LCA, assuming that we use the implementation of the disjoint-set data structure with path compression and union by rank.

4. \textbf{[10 Points]} Ackermann’s Function

The Ackermann’s function $A_i(n)$ is defined as follows:

$$A_i(n) = \begin{cases}
2 & \text{if } n = 1 \\
2n & \text{if } i = 1 \\
A_{i-1}(A_i(n-1)) & \text{otherwise}
\end{cases}$$

Here we define $A(x) = A_2(x)$. And we define $\alpha(n)$ as a pseudo-inverse function of $A(x)$. That is, $\alpha(n)$ is the least x such that $n \leq A(x)$.

(a) \textbf{[2 Points]} Give a precise description of what are the functions: $A_2(n)$, $A_3(n)$, and $A_4(n)$.

(b) \textbf{[3 Points]} \textbf{Prove} that $\lim_{n \rightarrow \infty} \frac{\alpha(n)}{\log^*(n)} = 0$.

(c) \textbf{[3 Points]} We define

$$\log^{**} n = \min \left\{ i \geq 1 \left| \underbrace{\log^* \ldots \log^*}_i n \leq 2 \right. \right\}$$

(i.e., how many times do you have to take \log^* of a number before you get a number smaller than 2). \textbf{Prove} that $\lim_{n \rightarrow \infty} \frac{\alpha(n)}{\log^{**}(n)} = 0$.

(d) \textbf{[2 Points]} \textbf{Prove} that $\log (\alpha(n)) \leq \alpha(\log^* n)$ for n large enough.