Score Grader
1.
2.
3.
4.
5.

Total
“Be that as it may, it is to night school that I owe what education I possess; I am the first to own that it doesn’t amount to much, though there is something rather grandiose about the gaps in it.”

– The tin drum, Gunter Grass

1 Required Problems

1. Sort them Up
 [20 Points]
 A sequence of real numbers x_1, \ldots, x_n is k-mixed, if there exists a permutation π, such that $x_{\pi(i)} \leq x_{\pi(i)+1}$ and $|\pi(i) - i| \leq k$, for $i = 1, \ldots, n - 1$.

 (a) [10 Points] Give a fast algorithm for sorting x_1, \ldots, x_n.
 (b) [10 Points] Prove a lower bound in the comparison model on the running time of your algorithm.

2. [20 Points]
 (a) [2 Points] With path compression and union by rank, during the lifetime of a Union-Find data-structure, how many elements would have rank equal to $\lfloor \log n - 5 \rfloor$, where there are n elements stored in the data-structure?
 (b) [2 Points] Same question, for rank $\lfloor (\log n)/2 \rfloor$.
 (c) [4 Points] Prove that in a set of n elements, a sequence of n consecutive FIND operations take $O(n)$ time in total.
 (d) [2 Points] Write a non-recursive version of FIND with path compression.
 (e) [6 Points] Show that any sequence of m MAKESET, FIND, and UNION operations, where all the UNION operations appear before any of the FIND operations, takes only $O(m)$ time if both path compression and union by rank are used.
 (f) [4 Points] What happens in the same situation if only the path compression is used?

3. Off-line Minimum
 [20 Points]
 The off-line minimum problem asks us to maintain a dynamic set T of elements from the domain $\{1, 2, \ldots, n\}$ under the operations INSERT and EXTRACT-MIN. We are given a sequence S of n INSERT and m EXTRACT-MIN calls, where each key in $\{1, 2, \ldots, n\}$ is inserted exactly once. We wish to determine which key is returned by each EXTRACT-MIN call. Specifically, we wish to fill in an array $extracted[1 \ldots m]$, where for $i = 1, 2, \ldots, m$, $extracted[i]$ is the key returned by the ith EXTRACT-MIN call. The problem is “off-line” in the sense that we are allowed to process the entire sequence S before determining any of the returned keys.

 (a) [4 Points] In the following instance of the off-line minimum problem, each INSERT is represented by a number and each EXTRACT-MIN is represented by the letter E:

 $4, 8, E, 3, E, 9, 2, 6, E, E, 1, 7, E, 5$.

 Fill in the correct values in the $extracted$ array.
(b) [8 Points]
To develop an algorithm for this problem, we break the sequence S into homogeneous subsequences. That is, we represent S by
$I_1, E, I_2, E, I_3, \ldots, I_m, E, I_{m+1},$
where each E represents a single EXTRACT-MIN call and each I_j represents a (possibly empty) sequence of INSERT calls. For each subsequence I_j, we initially place the keys inserted by these operations into a set K_j, which is empty if I_j is empty. We then do the following.

```
Off-Line-Minimum(m,n)
for i ← 1 to n
do determine j such that i ∈ K_j
if j ≠ m + 1 then extracted[j] ← i
let l be the smallest value greater than j for which set $K_l$ exists
$K_l ← K_j ∪ K_l$, destroying $K_j$
return extracted
```

Argue that the array $extracted$ returned by Off-Line-Minimum is correct.

(c) [8 Points]
Describe how to implement Off-Line-Minimum efficiently with a disjoint-set data structure. Give a tight bound on the worst-case running time of your implementation.

4. Tarjan’s Off-Line Least-Common-Ancestors Algorithm [20 Points]
The least common ancestor of two nodes u and v in a rooted tree T is the node w that is an ancestor of both u and v and that has the greatest depth in T. In the off-line least-common-ancestors problem, we are given a rooted tree T and an arbitrary set $P = \{\{u, v\}\}$ of unordered pairs of nodes in T, and we wish to determine the least common ancestor of each pair in P.

To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk of T with the initial call LCA(root[T]). Each node is assumed to be colored WHITE prior to the walk.

```
LCA(u)
1   MAKESET(u)
2   ancestor[Find(u)] ← u
3   for each child v of u in T
4     do LCA(v)
5       UNION(u, v)
6       ancestor[Find(u)] ← u
7     color[u] ← BLACK
8   for each node v such that \{u, v\} ∈ P
9     do if color[v] = BLACK
10      then print “The least common ancestor of” u “and” v “is”
      ancestor[Find(v)]
```
(a) [4 Points] Argue that line 10 is executed exactly once for each pair \(\{u, v\} \in P \).

(b) [4 Points] Argue that at the time of the call LCA\((u)\), the number of sets in the disjoint-set data structure is equal to the depth of \(u \) in \(T \).

(c) [6 Points] Prove that LCA correctly prints the least common ancestor of \(u \) and \(v \) for each pair \(\{u, v\} \in P \).

(d) [6 Points] Analyze the running time of LCA, assuming that we use the implementation of the disjoint-set data structure with path compression and union by rank.

5. **Smallest Interval**

 [20 Points]

 Given a set \(X \) of \(n \) real numbers \(x_1, \ldots, x_n \) (no necessarily given in sorted order), and \(k > 0 \) a parameter (which is not necessarily small). Let \(I_k = [a, b] \) be the shortest interval that contains \(k \) numbers of \(X \).

 (a) [5 Points] Give a \(O(n \log n) \) time algorithm that outputs \(I_k \).

 (b) [5 Points] An interval \(J \) is called 2-cover, if it contains at least \(k \) points of \(X \), and \(|J| \leq 2|I_k| \), where \(|J| \) denote the length of \(J \). Give a \(O(n \log n/k) \) expected time algorithm that computes a 2-cover.

 (c) [10 Points] (hard) Give an expected linear time algorithm that outputs a 2-cover of \(X \).
2 Practice Problems

1. Hashing to Victory

[20 Points]
In this question we will investigate the construction of hash table for a set W, where W is static, provided in advance, and we care only for search operations.

(a) [2 Points] Let $U = \{1, \ldots , m\}$, and $p = m + 1$ is a prime.
Let $W \subseteq U$, such that $n = |W|$, and s an integer number larger than n. Let $g_k(x, s) = (kx \mod p) \mod s$.
Let $\beta(k, j, s) = |\{x \mid x \in W, g_k(x, s) = j\}|$. Prove that
\[
\sum_{k=1}^{p-1} \sum_{j=1}^{s} \left(\beta(k, j, s) \right) < \frac{(p - 1)n^2}{s}.
\]

(b) [2 Points] Prove that there exists $k \in U$, such that
\[
\sum_{j=1}^{s} \left(\beta(k, j, s) \right) < \frac{n^2}{s}.
\]

(c) [2 Points] Prove that $\sum_{j=1}^{n} \beta(k, j, n) = |W| = n$.

(d) [3 Points] Prove that there exists a $k \in U$ such that $\sum_{j=1}^{n} (\beta(k, j, n))^2 < 3n$.

(e) [3 Points] Prove that there exists a $k' \in U$, such that the function $h(x) = (k'x \mod p) \mod n^2$ is one-to-one when restricted to W.

(f) [3 Points] Conclude, that one can construct a hash-table for W, of $O(n^2)$, such that there are no collisions, and a search operation can be performed in $O(1)$ time (note that the time here is worst case, also note that the construction time here is quite bad - ignore it).

(g) [3 Points] Using (d) and (f), conclude that one can build a two-level hash-table that uses $O(n)$ space, and perform a lookup operation in $O(1)$ time (worst case).

2. Find kth smallest number.

[20 Points]
This question asks you to design and analyze a randomized incremental algorithm to select the kth smallest element from a given set of n elements (from a universe with a linear order).

In an incremental algorithm, the input consists of a sequence of elements x_1, x_2, \ldots , x_n. After any prefix x_1, \ldots , x_{i-1} has been considered, the algorithm has computed the kth smallest element in x_1, \ldots , x_{i-1} (which is undefined if $i \leq k$), or if appropriate, some other invariant from which the kth smallest element could be determined. This invariant is updated as the next element x_i is considered.

Any incremental algorithm can be randomized by first randomly permuting the input sequence, with each permutation equally likely.

(a) [5 Points] Describe an incremental algorithm for computing the kth smallest element.
(b) [5 Points] How many comparisons does your algorithm perform in the worst case?

(c) [10 Points] What is the expected number (over all permutations) of comparisons performed by the randomized version of your algorithm? (Hint: When considering \(x_i \), what is the probability that \(x_i \) is smaller than the \(k \)th smallest so far?) You should aim for a bound of at most \(n + O(k \log(n/k)) \). Revise (a) if necessary in order to achieve this.

3. Another Lower Bound
[20 Points]
Let \(b_1 \leq b_2 \leq b_3 \leq \ldots \leq b_k \) be \(k \) given sorted numbers, and let \(A \) be a set of \(n \) arbitrary numbers \(A = \{a_1, \ldots, a_n\} \), such that \(b_1 < a_i < b_k \), for \(i = 1, \ldots, n \)
The rank \(v = r(a_i) \) of \(a_i \) is the index, such that \(b_v < a_i < b_{v+1} \).
Prove, that in the comparison model, any algorithm that outputs the ranks \(r(a_1), \ldots, r(a_n) \) must take \(\Omega(n \log k) \) running time in the worst case.

4. Ackermann Function
[20 Points]
The Ackermann’s function \(A_i(n) \) is defined as follows:
\[
A_i(n) = \begin{cases}
4 & \text{if } n = 1 \\
4n & \text{if } i = 1 \\
A_{i-1}(A_i(n-1)) & \text{otherwise}
\end{cases}
\]
Here we define \(A(x) = A_x(x) \). And we define \(\alpha(n) \) as a pseudo-inverse function of \(A(x) \). That is, \(\alpha(n) \) is the least \(x \) such that \(n \leq A(x) \).

(a) [4 Points] Give a precise description of what are the functions: \(A_2(n) \), \(A_3(n) \), and \(A_4(n) \).

(b) [4 Points] What is the number \(A(4) \)?

(c) [4 Points] Prove that \(\lim_{n \to \infty} \frac{\alpha(n)}{\log^*(n)} = 0 \).

(d) [4 Points] We define
\[
\log^{**} n = \min \left\{ i \geq 1 \left| \log^* \ldots \log^* n \leq 2 \right. \right\}
\]
(i.e., how many times do you have to take \(\log^* \) of a number before you get a number smaller than 2). Prove that \(\lim_{n \to \infty} \frac{\alpha(n)}{\log^{**}(n)} = 0 \).

(e) [4 Points] Prove that \(\log (\alpha(n)) \leq \alpha(\log^{**} n) \) for \(n \) large enough.

5. Divide-and-Conquer Multiplication
[20 Points]
(a) [7 Points] Show how to multiply two linear polynomials \(ax + b \) and \(cx + d \) using only three multiplications. (Hint: One of the multiplications is \((a + b) \cdot (c + d) \).)
(b) [7 Points] Give two divide-and-conquer algorithms for multiplying two polynomials of degree-bound n that run in time $\Theta(n^{\lg 3})$. The first algorithm should divide the input polynomial coefficients into a high half and a low half, and the second algorithm should divide them according to whether their index is odd or even.

(c) [6 Points] Show that two n-bit integers can be multiplied in $O(n^{\lg 3})$ steps, where each step operates on at most a constant number of 1-bit values.