CS 473u: Algorithms, Spring 2005
Homework 1, due February 10 23:59:59, 2005

Name:
Net ID: Alias: U G

Name:
Net ID: Alias: U G

Name:
Net ID: Alias: U G

<table>
<thead>
<tr>
<th>#</th>
<th>Score</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You will submit problems 1,2,3 and problems 4,5 in separate stapled sets. Print and fill out two copies of this sheet; attach a copy to the top of each of the two parts of your homework. Indicate which part is which by circling the relevant problems [1,2,3 or 4,5] on the cover sheet. On both copies of the cover sheet, neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
“Today I know that everything watches, that nothing goes unseen, and that even wallpaper has a better memory than ours. It isn’t God in His heaven that sees all. A kitchen chair, a coat-hanger a half-filled ash tray, or the wood replica of a woman name Niobe, can perfectly well serve as an unforgetting witness to every one of our acts.” – The tin drum, Gunter Grass

Required Problems

Note: Be sure to check out the updated Homework FAQ on the course webpage:

http://www-courses.cs.uiuc.edu/~cs473u/

1. Swapyland
[20 Points]

A swap is the exchange of position of two adjacent elements in an array. Consider an array $A[1..n]$ storing the integer numbers $1 \ldots n$ in a certain permutation, and the array $B[1..n]$ which is another permutation of those numbers.

The swap distance $d(A, B)$ denotes the minimum number of swaps needed to move from A to B.

(a) [5 Points] Show that for permutations A and B selected uniformly at random, the expected value of $d(A, B)$ is $n(n - 1)/4$.

(b) [15 Points] Show a $O(n \log n)$ time algorithm for computing the swap distance between A and B (hint: use a procedure similar to merge sort).

2. Median Land
[20 Points]

Let $A[1..m]$ and $B[1..n]$ be two sorted arrays, and let k be a positive integer. The element of rank k in the set $C = \{A[1], A[2], \ldots, A[m], B[1], \ldots, B[n]\}$, is the number in this set having exactly $k - 1$ numbers smaller than it in C.

Provide an algorithm that computes the element of rank k given A and B in $O(\log(n+m))$ time. (Partial credit will be given to a solution with running time $O((\log n)(\log m))$.)

3. 3Sum
[20 Points]

Let A be a set of n positive integer numbers in the range $[1, \ldots, M]$. The 3Sum problem asks if there are three numbers $a, b, c \in A$ such such that $a + b = c$.

(a) [10 Points] Give a simple $O(n^2)$ time algorithm for this problem. (Hint: Getting $O(n^2)$ is somewhat tricky. Try first to get $O(n^3)$ time algorithm, and then $O(n^2 \log n)$ time algorithm. Finally improve it into the required running time.)

(b) [10 Points] Give a $O(M \log M)$ time algorithm for this problem, assuming $M > n$. (Hint: Use FFT.)
4. Discrepancy

[20 Points]

Let \(R \) and \(B \) be two sets of red and blue points, respectively, on the real line. Let \(n \) be the total number of points in both sets. The discrepancy of a closed interval \(I \) is the quantity \(\mathcal{D}(I, R, B) = |I \cap R| - |I \cap B| \). In words, this is the difference in the number of red points to blue points inside the interval \(I \).

(a) [5 Points] Give an \(O(n \log n) \) time algorithm that outputs the interval with the maximum discrepancy.

(b) [5 Points] The Kullback-Leibler divergence for an interval \(I \) that contains at least one blue point, and at most \(|B| - 1 \) blue points, is

\[
\text{disc}(I) = r \ln \frac{r}{\hat{b}} + (1 - r) \ln \frac{1 - r}{1 - \hat{b}},
\]

where \(r = |R \cap I| / |R| \) and \(b = |B \cap I| / |B| \). Describe an algorithm that computes the interval with the maximum KL-divergence, that works in \(O(n^2) \) time.

(c) [10 Points]

Now assume that \(|R| = |B| = n \). We consider the minimum matching question, as follows. Partition the set \(R \cup B \) into pairs \((r_1, b_1), \ldots, (r_n, b_n) \) such that each pair has one blue point and one red point, and every point of \(R \cup B \) participates in exactly one pair. The price of the matching is \(\sum_{i=1}^{n} |r_i - b_i| \). Give an \(O(n \log n) \) time algorithm that computes the minimum-price matching. Prove the correctness of your algorithm.

5. k-means Clustering

[20 Points]

Let \(P \) be a set of \(n \) points on the real line. In the k-means clustering problem, one wishes to compute a set \(C \) of \(k \) points, such that the price of clustering \(P \) using \(C \) is minimized. The price for a point \(p \in P \) to be in a cluster that uses a center \(c \in C \) is the squared distance \(|p - c|^2 \). Thus, naturally, to minimize the price, every point is going to be served by the closest point to it in \(C \). Let \(C(p) \) denote the closest point to \(p \) in the set \(C \). Thus, the clustering price of \(P \) using \(C \) is

\[
\mu_C(P) = \sum_{p \in P} |p - C(p)|^2.
\]

(a) [5 Points] Given \(P \) and \(C \) such that \(|P| = n \) and \(|C| = k \), show an algorithm that computes \(\mu_C(P) \) in \(O(n \log k) \) time.

(b) [5 Points] Prove that if \(Q \) (a set of points on the real line) is served by a single center \(c \), then \(\mu_{\{c\}}(Q) \) is minimized when \(c \) is the center of gravity of \(Q \) (i.e., the mean of \(Q \)).

Formally, the minimum is achieved when \(c = \left(\sum_{q \in Q} q \right) / |Q| \).

(c) [10 Points] In the k-means clustering problem, one wants to partition \(P \) into \(k \) clusters, such that the k-means clustering price is minimized. Formally, describe an algorithm that receives as input a set \(P \) of \(n \) points, and outputs the set \(C \) of \(k \) numbers such that \(\mu_C(P) \) is minimized. Your algorithm should be as fast as possible.