1 Previous Lecture

1. Efficient algorithms: polynomial running time.
2. P - decision problems that can be solved in polynomial time.
3. NP - decision problems that can be verified in polynomial time.
4. Question: Is $P = NP$?
5. NP-Hard - problems that if they can be solved in polynomial time, then $P = NP$.
6. Cook’s Theorem: Circuit Satisfiability is NP-Hard and thus NP-Complete.
7. CSAT = Circuit Satisfiability.
8. SAT = Formula satisfiability (which is in NP).
9. By reduction if exists polytime algorithm for SAT then CSAT is polytime. Thus, SAT is NP-Complete.
10. 3SAT = Formula satisfiability where the formula is restricted to be a 3CNF:
 \[(a \lor b \lor c) \land (\overline{b} \lor c \lor d)\]
11. By reduction - if we can solve 3SAT in polytime, then CSAT can be solved in polytime.

2 Max-Clique

<table>
<thead>
<tr>
<th>Problem: MaxClique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance: A graph G</td>
</tr>
<tr>
<td>Question: What is the largest number of nodes in G forming a complete subgraph?</td>
</tr>
</tbody>
</table>
Q: Describe an algorithm for solving MaxClique?

- Enumerate all subsets $S \subseteq V(G)$
 - Check if S is a clique in G
- Return the largest S s.t. G_S is a clique.

Running time: $O(2^n n^2)$

Remark 2.1 When solving a problem, always try first to find a simple solution - try optimizing it later.

We will prove that MaxClique is NP-Hard.

Q: Why NP-Complete/Hard problems take exponential time?
A: Intuitively, we have to try all possibilities.

How to prove that a problem X is NP-Hard?

1. Chose a known NP-Complete problem: A.

2. Show how to solve any instance of A in polynomial time, assuming that you are given a polynomial time algorithm to solve X.

Theorem 2.2 MaxClique is NP-Hard.

Proof: We show a reduction from 3SAT. [formula in 3SAT looks like: $(a \lor b \lor c) \land (b \lor c \lor \bar{d}) \land (a \lor c \lor d) \land (a \lor \bar{b} \lor \bar{d})$.]

Let F be the given 3SAT formula defined over n variables with m clauses.
We build a graph:

1. Every literal in the formula is a vertex.
 We label a vertex with the literal it corresponds to.

2. Every clause correspond to the three such vertices.

3. We connect two vertices in the graph, if they are:
 (a) In different clauses,
Let G denote the resulting graph. See Figure 1 for an example.

We claim, that F is satisfiable iff there exists a clique of size m in G.

\Rightarrow Let x_1, \ldots, x_n be the variables in F. Let v_1, \ldots, v_n be the satisfying assignment.

For every clause C in F, there must be at least one literal that evaluates to TRUE. Pick a “TRUE” vertex from each clause. Let W be the resulting set of vertices. Clearly, W form a clique in G. The set W is of size m.

\Leftarrow Let U be the set of m vertices which form a clique in G.

What if the largest clique in G is of size $m - 1$?

Then, the original formula F is not satisfiable!

1. $x_i \leftarrow true$ if there is a vertex in U labeled with x_i.

2. $x_i \leftarrow false$ if there is a vertex in U labeled with $\overline{x_i}$.

This is a valid assignment (why?). This is a satisfying assignment, as there is at least one vertex of U in each clause, and as such, there is a literal evaluating to TRUE in each clause. Namely, F evaluates to TRUE.

Thus, given a polytime algorithm for MaxClique, we can solve 3SAT in polytime. Thus, MaxClique in NP-Hard.

Observations:

1. Life sucks, and then you die.

2. MaxClique is an optimization problem, however we can restate it:

Problem: CLIQUE

| Instance: A graph G, integer k |
| Question: Is there a clique in G of size k? |

Theorem 2.3 CLIQUE is NP-Complete.
Proof: It is \(NP \)-Hard, by the previous reduction. Thus, we only need to show that it is in \(NP \). Easy:

Given a graph \(G \) having \(n \) vertices, a parameter \(k \), and a set \(W \) of \(k \) vertices, verifying that every pair of vertices in \(W \) form an edge in \(G \), takes \(O(u + k^2) \), where \(u \) is the size of the input (i.e., number of edges + number of vertices).

Thus, \textsc{Clique} is \(NP \)-Complete.

Synonym to \textsc{Clique}?

coterie - a close circle of friends who share a common interest or background; clique.

3 IndependentSet

Problem: \textsc{IndependentSet}

Instance: A graph \(G \), integer \(k \)

Question: Is there an independent set in \(G \) of size \(k \)?

\textbf{Theorem 3.1} \textsc{IndependentSet} \textit{is NP-Complete}.

Proof: We do a reduction from \textsc{Clique}. Given \(G \) and \(k \), compute the complement graph \(\overline{G} \) where we connected two vertices \(u, v \) in \(\overline{G} \) iff they are independent in \(G \). Clearly, a clique in \(G \) corresponds to an independent set in \(\overline{G} \). Thus, \textsc{IndependentSet} is \(NP \)-hard, and since it is in \(NP \), it is \(NPC \).
4 Vertex Cover

Definition 4.1 For a graph G, a set of vertices $S \subseteq V(G)$ is a Vertex Cover if it touches every edge of G.

Problem: VertexCover

| Instance: A graph G, integer k |
| Question: Is there a vertex cover in G of size k? |

Observation 4.2 S is a vertex cover in G iff $V \setminus S$ is an independent set in G.

Theorem 4.3 VertexCover is NP-C.

Proof: VertexCover is NP. Reduction from Independent Set. Given a graph G and parameter k, we ask whether the graph G has a VertexCover of size $n - k$.

5 Graph Coloring

Definition 5.1 A coloring, is a mapping $C : V(G) \rightarrow \{1, 2, \ldots, c\}$ such that every edge the colors assigned to its endpoints are different.

Coloring is extremely useful for:

1. Resource allocation - used in compilers
2. Scheduling.

Problem: 3Colorable

| Instance: A graph G |
| Question: Is there a coloring of G using three colors? |

Theorem 5.2 3Colorable is NP-Complete.

Proof: 3Colorable is clearly in NP.

The reduction is from 3SAT. Let F be the given 3SAT formula. We are going to transform F into a graph using gadgets.

Color generating gadget

We have three special vertices: X, F, T.

Variable Gadget
Note that X here is the **SAME** vertex as the X vertex in the above drawing.

Clause Gadget

\[
\begin{align*}
& a \lor b \lor c \\
& a \lor b \lor \overline{c}
\end{align*}
\]

For example, the formula:

\[
(a \lor b \lor c) \land (b \lor \overline{c} \lor d) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d}).
\]

Generates the graph: