19: Network Flow II - The Vengeance

CS 473u - Algorithms - Spring 2005

March 28, 2005

1 Previous Lecture

Theorem 1.1 (Max-flow min-cut theorem)

If f is a flow in a flow network $G = (V, E)$ with source s and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G

2. The residual network G_f contains no augmenting paths.

3. $|f| = c(S, T)$ for some cut (S, T) of G. And (S, T) is a minimum cut in G.
People that do not know maximum flows: essentially everybody.

Average salary on earth: $5,000

People that know maximum flow - most of them work in programming related jobs and make at least $10,000 a year.

Salary of people that learned maximum flows: > $10,000
Salary of people that did not learn maximum flows: < $5,000
Salary of people that know latin: $0 (unemployed)

Thus, by just learning maximum flows you can double your future salary!
3 Ford-Fulkerson Algorithm

Ford-Fulkerson(G,s,t)

- Init flow f to zero

While \exists a path p from s to t in G_f

- $c_f(p) \leftarrow \min \{c_f(u,v) \mid uv \text{ is in } p\}$

For each edge uv in p do

- $f(u,v) \leftarrow f(u,v) + c_f(p)$
- $f(v,u) \leftarrow f(v,u) - c_f(p)$

Lemma 3.1 If the capacities on the edges of G are integers, then Ford-Fulkerson runs in $O(m|f^*|)$ time, where $|f^*|$ is the amount of flow in the maximum flow and $m = |E(G)|$.

Proof: Observe that the Ford-Fulkerson algorithm perform only subtraction/addition and min operations. Thus, if it finds an augmenting path, then $c_f(p)$ must be a positive integer number. Namely, $c_f(p) \geq 1$. Thus, $|f^*|$ must be an integer number (by induction), and each iteration of the while improves the flow by at least 1. It follows, that after $|f^*|$ iterations of the while the algorithm stops. However, each iteration of the while loop takes $O(m)$ time, as can be easily verified.

Observation 3.2 (Integrality theorem) If the capacity function c takes on only integral values, then the maximum flow f produced by the Ford-Fulkerson method has the property that $|f|$ is integer-valued. Moreover, for all vertices u and v, the value of $f(u,v)$ is an integer.

4 Edmonds-Karp algorithm

Edmonds-Karp algorithm works by modifying the Ford-Fulkerson algorithm so that it always return the (edge) shortest augmenting path in G_f. This is implemented by finding p using BFS.

Definition 4.1 For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph G_f. Each edge is considered to be of length 1.

Lemma 4.2 If the Edmonds-Karp algorithm is run on a flow network $G = (V,E)$ with source s and sink t, then for all vertices $v \in V - s,t$, the shortest path distance $\delta_f(v)$ in the residual network G_f increases monotonically with each flow augmentation.

We delay proving this technical lemma. Lets first prove that it is helping in our life.

Lemma 4.3 During the execution of EK algorithm, an edge uv might disappear (and thus reappear) from G_{f_i} at most $n/2$ times, where $n = |V(G)|$.

Proof: When \overrightarrow{uv} disappears that it must be that uv was on the augmenting path p. Furthermore, $c_f(p) = c_f(uv)$. We continue running EK till uv magically reappear. This means that before uv reappeared, we handled an augmenting path π that contains the edge \overrightarrow{vu}. Let g be the flow just after this. We have

$$\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$$

as Edmonds-Karp is always augmenting along the shortest path. Namely, the distance of s to u had increased by two between its disappearance and reappearance. Since $\delta_0(u) \geq 0$ and the maximum value of $\delta_f(u)$ is n, it follows that uv can disappear and reappear at most $n/2$ times during the execution of Edmonds-Karp algorithm.

Observation 4.4 Every time we add an augmenting path during the execution of EK algorithm, at least one edge disappears from the residual graph G_f. The “bottleneck” edge (the one that realizes the flow along the augmenting path) along the augmenting path disappears after we apply the augmenting path.

Lemma 4.5 Edmonds-Karp algorithm handles at most $O(nm)$ augmenting paths before it stops. In particular, each augmenting path takes $O(m)$ time, and the overall running time of Edmonds-Karp algorithm is $O(nm^2)$ time, where $n = |V(G)|$ and $m = |E(G)|$.

Proof: Every edge might disappear at most $n/2$ times during EK execution. Thus, there are at most $nm/2$ edge disappearances during the execution of the EK algorithm. Each time we augment a path, an edge disappears. Augmenting a path takes $O(m)$ time, as we have to perform BFS to find the augmenting path. It follows, that the overall running time is as claimed.

We are done??
Thus,
\[\delta_f(u) = \delta_f(v) + 1 > \delta_g(v) = \delta_g(u) + 1. \]
Thus, \(\delta_f(u) > \delta_g(u) \). A contradiction. WHY?

5 Maximum Bipartite Matching

Definition 5.1 For an undirected graph \(G = (V, E) \) a **matching** is a subset of edges \(M \subseteq E \) such that for all vertices \(v \in V \), at most one edge of \(M \) incident on \(v \). A **maximum matching** is a matching \(M \) such that for any matching \(M' \) we have \(|M| \geq |M'| \).

A bipartite graph:

And a maximum matching in this graph:

A matching is perfect, if it involved all vertices:

Theorem 5.2 One can compute maximum bipartite matching using network flows.

Proof: We create a new graph, with new source on the length and sink on the right. Direct all edges from left to right, and set their capacity to 1. See:
6 Multiple Sources and Sinks

Given several sources and sinks, how can we compute maximum flow on such a network?

Idea: Create a super source, that send all its flow to the old sources, and similarly create a super sink.

Resulting graph: