NP Completeness

02 - Additional Problems

February 5, 2003

1 Previous Lecture

1. Efficient algorithms: polynomial running time.
2. P - decision problems that can be solved in polynomial time.
3. \(NP \) - decision problems that can be verified in polynomial time.
4. Question: Is \(P = NP \)?
5. \(NP \)-Hard - problems that if they can be solved in polynomial time, then \(P = NP \).
6. Cook’s Theorem: Circuit Satisfiability is \(NP \)-Hard and thus \(NP \)-Complete.
7. \(CSAT = \) Circuit Satisfiability.
8. \(SAT = \) Formula satisfiability (which is in \(NP \)).
9. By reduction if exists polytime algorithm for \(SAT \) then \(CSAT \) is polytime. Thus, \(SAT \) is \(NP \)-Complete.
10. \(3SAT = \) Formula satisfiability where the formula is restricted to be a 3CNF:
 \[(a \lor b \lor c) \land (\overline{b} \lor c \lor d) \]
11. By reduction - if we can solve \(3SAT \) in polytime, then \(CSAT \) can be solved in polytime.

2 Max-Clique

Problem: MAXCLIQUE

Instance: A graph \(G \)
Question: What is the largest number of nodes in \(G \) forming a complete subgraph?
Q: Describe an algorithm for solving MaxClique?

- Enumerate all subsets $S \subseteq V(G)$
 - Check if S is a clique in G
- Return the largest S s.t. G_S is a clique.

Running time: $O(2^n n^2)$

Remark 2.1 When solving a problem, always try first to find a simple solution - try optimizing it later.

We will prove that MaxClique is NP-Hard.

Q: Why NP-Complete/Hard problems take exponential time?

A: Intuitively, we have to try all possibilities.

How to prove that a problem X is NP-Hard?

1. Chose a known NP-Complete problem: A.
2. Show how to solve any instance of A in polynomial time, assuming that you are given a polynomial time algorithm to solve X.

Theorem 2.2 MaxClique is NP-Hard.

Proof: We show a reduction from 3SAT. [formula in 3SAT looks like: $(a \vee b \vee c) \wedge (b \vee c \vee d) \wedge (a \vee c \vee d) \wedge (a \vee b \vee d).$]

Let F be the given 3SAT formula defined over n variables with m clauses.

We build a graph:

1. Every literal in the formula is a vertex.
 We label a vertex with the literal it corresponds to.
2. Every clause correspond to the three such vertices.
3. We connect two vertices in the graph, if they are:
 (a) In different clauses,
(b) **and** are NOT a negation of each other.

Let G denote the resulting graph. See Figure 1 for an example.

We claim, that F is satisfiable iff there exists a clique of size m in G.

⇒ Let x_1, \ldots, x_n be the variables in F. Let v_1, \ldots, v_n be the satisfying assignment

For every clause C in F, there must be at least one literal that evaluates to TRUE. Pick a "TRUE" vertex from each clause. Let W be the resulting set of vertices. Clearly, W form a clique in G. The set W is of size m.

⇐ Let U be the set of m vertices which form a clique in G.

What if the largest clique in G is of size $m - 1$?

Then, the original formula F is not satisfiable!

1. $x_i \leftarrow true$ if there is a vertex in U labeled with x_i.

2. $x_i \leftarrow false$ if there is a vertex in U labeled with $\overline{x_i}$.

This is a valid assignment (why?). This is a satisfying assignment, as there is at least one vertex of U in each clause, and as such, there is a literal evaluating to TRUE in each clause. Namely, F evaluates to TRUE.

Thus, given a polytime algorithm for MaxClique, we can solve 3SAT in polytime. Thus, MaxClique in NP-Hard.

Observations:

1. Life sucks, and then you die.

2. MaxClique is an optimization problem, however we can restate it:

Problem: CLIQUE

| Instance: A graph G, integer k |
| Question: Is there a clique in G of size k? |

Theorem 2.3 CLIQUE is NP-Complete.
Proof: It is \(NP \)-Hard, by the previous reduction. Thus, we only need to show that it is in \(NP \). Easy:

Given a graph \(G \) having \(n \) vertices, a parameter \(k \), and a set \(W \) of \(k \) vertices, verifying that every pair of vertices in \(W \) form an edge in \(G \), takes \(O(u + k^2) \), where \(u \) is the size of the input (i.e., number of edges + number of vertices).

Thus, \textsc{Clique} is \(NP \)-Complete.

Synonym to \textsc{Clique}?

coterie - a close circle of friends who share a common interest or background; clique.

3 \textbf{IndependentSet}

\textbf{Problem:} \textsc{IndependentSet}

\textbf{Instance:} A graph \(G \), integer \(k \)

\textbf{Question:} Is there an independent set in \(G \) of size \(k \)?

\textbf{Theorem 3.1} \textsc{IndependentSet} is \(NP \)-Complete.

\textit{Proof:} We do a reduction from \textsc{Clique}. Given \(G \) and \(k \), compute the complement graph \(\overline{G} \) where we connected two vertices \(u, v \) in \(\overline{G} \) iff they are independent in \(G \). Clearly, a clique in \(G \) corresponds to an independent set in \(\overline{G} \). Thus, \textsc{IndependentSet} is \(NP \)-hard, and since it is in \(NP \), it is \(NPC \).
4 Vertex Cover

Definition 4.1 For a graph G, a set of vertices $S \subseteq V(G)$ is a Vertex Cover if it touches every edge of G.

Problem: \textsc{VertexCover}

| \textit{Instance:} A graph G, integer k |
| \textit{Question:} Is there a vertex cover in G of size k? |

Observation 4.2 S is a vertex cover in G iff $V \setminus S$ is an independent set in G.

Theorem 4.3 \textsc{VertexCover} is \textsc{NP}-Complete.

Proof: \textsc{VertexCover} is \textsc{NP}. Reduction from Independent Set. Given a graph G and parameter k, we ask whether the graph G has a \textsc{VertexCover} of size $n - k$.

5 Graph Coloring

Definition 5.1 A coloring, is a mapping $C : V(G) \rightarrow \{1, 2, \ldots, c\}$ such that every edge the colors assigned to its endpoints are different.

Coloring is extremely useful for:

1. Resource allocation - used in compilers
2. Scheduling.

Problem: \textsc{3Colorable}

| \textit{Instance:} A graph G. |
| \textit{Question:} Is there a coloring of G using three colors? |

Theorem 5.2 \textsc{3Colorable} is \textsc{NP}-Complete.

Proof: \textsc{3Colorable} is clearly in \textsc{NP}.

The reduction is from 3SAT. Let F be the given 3SAT formula. We are going to transform F into a graph using gadgets.

Color generating gadget

We have three special vertices: X, F, T.

Variable Gadget

We have three special vertices: X, F, T.
Note that X here is the SAME vertex as the X vertex in the above drawing.

Clause Gadget

\[
\begin{align*}
& a \\
& b \\
& \overline{\tau} \\
& \overline{\tau} \\
& \vdash
\end{align*}
\]

\[a \lor b \lor \overline{c}\]

For example, the formula:

\[
(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d}).
\]

Generates the graph:

![Diagram of a graph with labeled vertices and edges representing a clause gadget for SAT problem.]