Union Find

April 14, 2003

1 Union Find

We want to maintain a collection of sets, under the operations of:

1. MakeSet(x) - create a set \(x \)
2. Find(x) - return the set that contains \(x \).
3. Union(A,B) - return the set which is the union of \(A \) and \(B \). Namely \(A \cup B \).

1.1 Amortized analysis

We use a data-structure as a black-box inside an algorithm (for example Union-Find in Kruskal algorithm). So far, when we design a data-structure we cared about worst case time for operation. But is this the right measure???

No. We care about the OVERALL running time of the data-structure, and less about its running time for a single operation.

Amortized running time of operation = (overall running time)/(number of operations).

To implement this operations, we are going to use Reversed Trees.

1. MakeSet - create a singleton pointing to itself:

2. Find(x)
3. Union(a, p)

![Diagram of Union(a, p)](image)

Note, that in the worst case, depth of tree can be linear, so search time is $\Omega(n)$ (search time=length of path to the root). Bad.

Q: How to improve performance?

A:

Union by rank
Maintain for every tree, in the root, a bound on its depth (called rank). Always hang the smaller tree on the larger tree.

Path Compression
Since, anyway, we travel the path to the root during a find operation, we might as well hang all the nodes on the path directly on the root.

```
New tree after Find(z) operation:
```

```
MakeSet(x)
parent(x) ← x
rank(x) ← 0

Find(x)
if x ≠ parent(x) then
parent(x) ← Find(parent(x))
return parent(x)
```
Union\((x, y)\)

\[A \leftarrow \text{Find}(x) \]
\[B \leftarrow \text{Find}(y) \]

if \(\text{rank}(A) \geq \text{rank}(B)\)

\[\text{parent}(B) \leftarrow A \]
else

\[\text{parent}(A) \leftarrow B \]

If \((\text{rank}(A) = \text{rank}(B))\)

\[\text{rank}(B) \leftarrow \text{rank}(B) + 1 \]

This is known as **union by rank** and **path compression**.

Definition 1.1 A node in the UF data-structure is a **leader** if it is the root of a tree.

Lemma 1.2 Once a node stop being a leader (i.e., the node in top of a tree), it can never become a leader again.

Lemma 1.3 Once a node stop being a leader than its rank is fixed.

Lemma 1.4 Ranks are monotonically increasing in the reversed trees, as we travel for a node to the root of the tree.

Lemma 1.5 When a node gets rank \(k\) than there are at least \(\geq 2^k\) elements in its subtree.

Proof: The proof is by induction. For \(k = 0\) it is obvious. Next observe that a node gets rank \(k\) only if the merged two roots has rank \(k-1\). By induction, they have \(2^{k-1}\) nodes (each one of them), and thus the merged tree has \(\geq 2^{k-1} + 2^{k-1} = 2^k\) nodes.

Lemma 1.6 The number of nodes of rank \(k\) during all the execution of the Union-Find data-structure is at most \(n/2^k\).

Proof: Again, by induction. For \(k = 0\) it is obvious. We charge a node \(v\) of rank \(k\) to the two elements of rank \(k-1\) that were leaders that were used to create it – one of them is \(v\) having degree \(k-1\), the other one is some other node \(u\). After the merge \(v\) is of rank \(k\) and \(u\) is of rank \(k-1\) and it is no longer a leader (it can not participate in a union as a leader). Thus we can charge this event to the two no longer active nodes of degree \(k-1\). Namely, \(u\) and \(v\). By induction, we have \(n/2^{k-1}\)such nodes, and thus \(\leq (n/2^{k-1})/2 = n/2^k\) such nodes of degree \(k\).

Lemma 1.7 The time to perform a single Find operation when we perform union by rank and path compression is \(O(\log n)\) time.

Proof: The rank of the leader bounds the depth of a tree \(T\) in the Union Find data-structure. By the above lemma, if we have \(n\) elements, the maximum rank is \(\log n\) and thus the depth of a tree is at most \(O(\log n)\).

Theorem 1.8 If we perform a sequence of \(m\) operations over \(n\) elements, the overall running time of the Union-Find data-structure is \(O((n + m) \log^* n)\).
Definition 1.9 \(\text{Tower}(b) = 2^{\text{Tower}(b-1)} \) and \(\text{Tower}(0) = 1 \).

Definition 1.10 \(\text{Block}(i) = [\text{Tower}(i - 1) + 1, \text{Tower}(i)] \)
\[\text{Block}(i) = [z, 2^z - 1] \] for \(z = \text{Tower}(i - 1) + 1 \).

Observation 1.11 The running time of Find\((x) \) is proportional to the length of the path from \(x \) to the root of the tree that contains \(x \). Indeed, we start from \(x \) and we visit the sequence:
\[x_1 = x, \ x_2 = \text{parent}(x) = \text{parent}(x_1), \ldots, \ x_i = \text{parent}(x_{i-1}), \ldots, x_m = \text{root} \]
Clearly, we have for this sequence: \(\text{rank}(x_1) < \text{rank}(x_2) < \text{rank}(x_3) < \ldots < \text{rank}(x_m) \).
Note, that the time to perform find, is proportional to \(m \).

Definition 1.12 A node \(x \) is in the \(i \)-th block if \(\text{rank}(x) \in \text{Block}(i) \).

We are now looking for ways to pay for the find operation.

Observation 1.13 The rank of a node \(v \) is \(O(\log n) \), and the number of blocks is \(O(\log^* n) \).

Observation 1.14 During a find operation, since the ranks of the nodes we visit are monotone increasing, once we pass through from a node \(v \) in the \(i \)-th block into a node in the \((i + 1)\)-th block, we can never go back to the \(i \)-th block (i.e., visit elements with rank in the \(i \)-th block).
Lemma 1.15 During a Find operation, the number of jumps between blocks is \(O(\log^* n) \).

Observation 1.16 If \(x \) and parent\((x)\) are in the same block and we perform a find operation that passes through \(x \). Let \(r_{\text{before}} = \text{rank(parent(x))} \) before the find operation, and let \(r_{\text{after}} \) be \(\text{rank(parent(x))} \) after the Find operation. Then because of path compression, we have \(r_{\text{after}} > r_{\text{before}} \).

Namely, when we jump inside a block, we do some work: we make the parent point jump forward.

Definition 1.17 A jump during a find operation inside the \(i \)-th block is called an internal jump.

Lemma 1.18 At most \(|\text{Block}(i)| \leq \text{Tower}(i) \) find operations can pass through an element \(x \) which is in the \(i \)-th block (i.e., \(\text{rank}(x) \in \text{Block}(i) \)) before parent\((x)\) is no longer in the \(i \)-th block.

Lemma 1.19 There are at most \(n/\text{Tower}(i) \) nodes that have ranks in the \(i \)-th block throughout the algorithm execution.

Proof: Clearly,

\[
\sum_{i=\text{Tower}(i-1)+1}^{\text{Tower}(i)} \frac{n}{2^i} = n \cdot \sum_{i=\text{Tower}(i-1)+1}^{\text{Tower}(i)} \frac{1}{2^i} \leq \frac{n}{2^{\text{Tower}(i-1)}} = \frac{n}{\text{Tower}(i)}.
\]

Lemma 1.20 The number of inner block jumps performed inside the \(i \)-th block performed during the lifetime of the union-find data-structure is \(O(n) \).

Proof: An element \(x \) in the \(i \)-th block, can have \(|\text{Block}(i)| \) jumps. There are \(n/\text{Tower}(i) \) such elements. Thus, the total number of internal jumps is

\[
|\text{Block}(i)| \cdot \frac{n}{\text{Tower}(i)} \leq \text{Tower}(i) \cdot \frac{n}{\text{Tower}(i)} = n.
\]

We are now ready for the last step:

Lemma 1.21 The number of internal jumps performed by the Union-Find data-structure overall is \(O(n \log^* n) \).

Proof: Every internal jump can be associated with the block it is being performed in. Every block contributes \(O(n) \) internal jumps throughout the execution of the union-find data-structures. There are \(O(\log^* n) \) blocks. As such there are at most \(O(n \log^* n) \) internal jumps.

Lemma 1.22 The overall time spent on \(m \) Find operations is \(O((m + n) \log^* n) \).