
Chapter 28

Union Find
By Sariel Har-Peled, December 30, 2014¬ Version: 0.2

28.1. Union-Find

28.1.1. Requirements from the
data-structure

We want to maintain a collection of sets,
under the following operations.

(i) makeSet(x) - creates a set that con-
tains the single element x.

(ii) find(x) - returns the set that contains
x.

(iii) union(A,B) - returns the set which
is the union of A and B. Namely
A∪B. Namely, this operation merges
the two sets A and B and return the
merged set.

Scene: It’s a fine sunny day in the forest, and a rabbit is sitting
outside his burrow, tippy-tapping on his typewriter.
Along comes a fox, out for a walk.
Fox: “What are you working on?”
Rabbit: “My thesis.”
Fox: “Hmmm. What’s it about?”
Rabbit: “Oh, I’m writing about how rabbits eat foxes.”
Fox: (incredulous pause) “That’s ridiculous! Any fool knows that
rabbits don’t eat foxes.”
Rabbit: “Sure they do, and I can prove it. Come with me.”
They both disappear into the rabbit’s burrow. After a few min-
utes, the rabbit returns, alone, to his typewriter and resumes typ-
ing.
Scene inside the rabbit’s burrow: In one corner, there is a pile
of fox bones. In another corner, a pile of wolf bones. On the other
side of the room, a huge lion is belching and picking his teeth.
(The End)
Moral: It doesn’t matter what you choose for a thesis subject.
It doesn’t matter what you use for data.
What does matter is who you have for a thesis advisor.

– – Anonymous

28.1.2. Amortized analysis
We use a data-structure as a black-box inside an algorithm (for example Union-Find in Kruskal algorithm for
computing minimum spanning tee). So far, when we design a data-structure we cared about worst case time
for operation. Note however, that this is not necessarily the right measure. Indeed, we care about the overall
running time spend on doing operations in the data-structure, and less about its running time for a single
operation.

Formally, the amortized running-time of an operation is the average time it takes to perform an operation

on the data-structure. Formally, the amortized time of an operation is
overall running time
number of operations

.

28.1.3. The data-structure
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

x

a

cb

d

y

z

x

a

cb

d

y z

(a) (b)

Figure 28.2: (a) The tree before performing find(z), and (b) The reversed tree after performing find(z) that uses
path compression.

a

cb

ed

f g h

i j

k

Figure 28.1: The Union-Find representation of the
sets A = {a, b, c, d, e} and B = { f , g, h, i, j, k}. The
set A is uniquely identified by a pointer to the root of
A, which is the node containing a.

To implement this operations, we are going to
use Reversed Trees. In a reversed tree, every el-
ement is stored in its own node. A node has one
pointer to its parent. A set is uniquely identified
with the element stored in the root of such a reversed
tree. See Figure 28.1 for an example of how such a
reversed tree looks like.

We implement the operations of the Union-Find
data structure as follows:

a

(A) makeSet: Create a singleton pointing to itself:

a

cb

xd

(B) find(x): We start from the node that contains x, and we start traversing up the tree, fol-
lowing the parent pointer of the current node, till we get to the root, which is just a node
with its parent pointer pointing to itself.
Thus, doing a find(x) operation in the reversed tree shown on the right, involve going up
the tree from x→ b→ a, and returning a as the set.

(C) union(a, p): We merge two sets, by hanging the root of one tree,
on the root of the other. Note, that this is a destructive operation,
and the two original sets no longer exist. Example of how the new
tree representing the new set is depicted on the right.

Note, that in the worst case, depth of tree can be linear in n (the number of elements stored in the tree),
so the find operation might require Ω(n) time. To see that this worst case is realizable perform the following
sequence of operations: create n sets of size 1, and repeatedly merge the current set with a singleton. If we
always merge (i.e., do union) the current set with a singleton by hanging the current set on the singleton, the
end result would be a reversed tree which looks like a linked list of length n. Doing a find on the deepest
element will take linear time.

So, the question is how to further improve the performance of this data-structure. We are going to do this,
by using two “hacks”:

(i) Union by rank: Maintain for every tree, in the root, a bound on its depth (called rank). Always hang

2

makeSet(x)
p(x)← x
rank(x)← 0

find(x)
if x , p(x) then

p(x)← find(p(x))
return p(x)

union(x, y)
A← find(x)
B← find(y)
if rank(A) > rank(B) then

p(B)← A
else

p(A)← B
if rank(A) = rank(B) then

rank(B)← rank(B) + 1

Figure 28.3: The pseudo-code for the Union-Find data-structure that uses both path-compression and union by
rank. For element x, we denote the parent pointer of x by p(x).

the smaller tree on the larger tree.
(ii) Path compression: Since, anyway, we travel the path to the root during a find operation, we might

as well hang all the nodes on the path directly on the root.
An example of the effects of path compression are depicted in Figure 28.2. For the pseudo-code of the

makeSet, union and find using path compression and union by rank, see Figure 28.3.
We maintain a rank which is associated with each element in the data-structure. When a singleton is being

created, its associated rank is set to zero. Whenever two sets are being merged, we update the rank of the new
root of the merged trees. If the two trees have different root ranks, then the rank of the root does not change. If
they are equal then we set the rank of the new root to be larger by one.

28.2. Analyzing the Union-Find Data-Structure
Definition 28.2.1. A node in the union-find data-structure is a leader if it is the root of a (reversed) tree.

Lemma 28.2.2. Once a node stop being a leader (i.e., the node in top of a tree), it can never become a leader
again.

Proof: Note, that an element x can stop being a leader only because of a union operation that hanged x on an
element y. From this point on, the only operation that might change x parent pointer, is a find operation that
traverses through x. Since path-compression can only change the parent pointer of x to point to some other
element y, it follows that x parent pointer will never become equal to x again. Namely, once x stop being a
leader, it can never be a leader again.

Lemma 28.2.3. Once a node stop being a leader then its rank is fixed.

Proof: The rank of an element changes only by the union operation. However, the union operation changes
the rank, only for elements that are leader after the operation is done. As such, if an element is no longer a
leader, than its rank is fixed.

Lemma 28.2.4. Ranks are monotonically increasing in the reversed trees, as we travel from a node to the root
of the tree.

3

Proof: It is enough to prove, that for every edge u → v in the data-structure, we have rank(u) < rank(v). The
proof is by induction. Indeed, in the beginning of time, all sets are singletons, with rank zero, and the claim
trivially holds.

Next, assume that the claim holds at time t, just before we perform an operation. Clearly, if this operation
is union (A, B), and assume that we hanged root(A) on root(B). In this case, it must be that rank(root(B)) is
now larger than rank(root(A)), as can be easily verified. As such, if the claim held before the union operation,
then it is also true after it was performed.

If the operation is find, and we traverse the path π, then all the nodes of π are made to point to the last node
v of π. However, by induction, rank(v) is larger than the rank of all the other nodes of π. In particular, all the
nodes that get compressed, the rank of their new parent, is larger than their own rank.

Lemma 28.2.5. When a node gets rank k than there are at least ≥ 2k elements in its subtree.

Proof: The proof is by induction. For k = 0 it is obvious since a singleton has a rank zero, and a single element
in the set. Next observe that a node gets rank k only if the merged two roots has rank k − 1. By induction, they
have 2k−1 nodes (each one of them), and thus the merged tree has ≥ 2k−1 + 2k−1 = 2k nodes.

Lemma 28.2.6. The number of nodes that get assigned rank k throughout the execution of the Union-Find
data-structure is at most n/2k.

Proof: Again, by induction. For k = 0 it is obvious. We charge a node v of rank k to the two elements u and v
of rank k − 1 that were leaders that were used to create the new larger set. After the merge v is of rank k and
u is of rank k − 1 and it is no longer a leader (it can not participate in a union as a leader any more). Thus, we
can charge this event to the two (no longer active) nodes of degree k − 1. Namely, u and v.

By induction, we have that the algorithm created at most n/2k−1 nodes of rank k − 1, and thus the number
of nodes of rank k created by the algorithm is at most ≤

(
n/2k−1

)
/2 = n/2k.

Lemma 28.2.7. The time to perform a single find operation when we perform union by rank and path com-
pression is O(log n) time.

Proof: The rank of the leader v of a reversed tree T , bounds the depth of a tree T in the Union-Find data-
structure. By the above lemma, if we have n elements, the maximum rank is lg n and thus the depth of a tree is
at most O(log n).

Surprisingly, we can do much better.

Theorem 28.2.8. If we perform a sequence of m operations over n elements, the overall running time of the
Union-Find data-structure is O

(
(n + m) log∗ n

)
.

We remind the reader that log∗(n) is the number one has to take lg of a number to get a number smaller than
two (there are other definitions, but they are all equivalent, up to adding a small constant). Thus, log∗ 2 = 1 and
log∗ 22 = 2. Similarly, log∗ 222

= 1 + log∗(22) = 2 + log∗ 2 = 3. Similarly, log∗ 2222

= log∗(65536) = 4. Things
get really exciting, when one considers

log∗ 22222

= log∗265536 = 5.

However, log∗ is a monotone increasing function. And β = 22222

= 265536 is a huge number (considerably
larger than the number of atoms in the universe). Thus, for all practical purposes, log∗ returns a value which is
smaller than 5. Intuitively, Theorem 28.2.8 states (in the amortized sense), that the Union-Find data-structure
takes constant time per operation (unless n is larger than β which is unlikely).

It would be useful to look on the inverse function to log∗.

4

Definition 28.2.9. Let Tower(b) = 2Tower(b−1) and Tower(0) = 1.

So, Tower(i) is just a tower of 222·
· ·2

of height i. Observe that log∗(Tower(i)) = i.

Definition 28.2.10. For i ≥ 0, let Block(i) = [Tower(i − 1) + 1,Tower(i)]; that is

Block(i) =
[
z, 2z−1

]
for z = Tower(i − 1) + 1.

For technical reasons, we define Block(0) = [0, 1]. As such,

Block(0) =
[
0, 1
]

Block(1) =
[
2, 2
]

Block(2) =
[
3, 4
]

Block(3) =
[
5, 16
]

Block(4) =
[
17, 65536

]
Block(5) =

[
65537, 265536

]
....

The running time of find(x) is proportional to the length of the path from x to the root of the tree that
contains x. Indeed, we start from x and we visit the sequence:

x1 = x, x2 = p(x) = p(x1), ..., xi = p(xi−1) , . . . , xm = root of tree.

Clearly, we have for this sequence: rank(x1) < rank(x2) < rank(x3) < . . . < rank(xm), and the time it takes
to perform find(x) is proportional to m, the length of the path from x to the root of the tree containing x.

Definition 28.2.11. A node x is in the ith block if rank(x) ∈ Block(i).

We are now looking for ways to pay for the find operation, since the other two operations take constant
time.

Block(0)

Block(1)

Block(1 . . . 4)

Block(5)

Block(6 . . . 7)

Block(8)

Block(9)

Block(10)

between jump

internal jump

Observe, that the maximum rank of a node v is O(log n), and
the number of blocks is O

(
log∗ n

)
, since O(log n) is in the block

Block(c log∗ n), for c a constant sufficiently large.
In particular, consider a find (x) operation, and let π be the path

visited. Next, consider the ranks of the elements of π, and imagine
partitioning π into which blocks each element rank belongs to. An
example of such a path is depicted on the right. The price of the find
operation is the length of π.

Formally, for a node x, ν = indexB(x) is the index of the block
that contains rank(x). Namely, rank(x) ∈ Block

(
indexB(x)

)
. As

such, indexB(x) is the block of x.
Now, during a find operation, since the ranks of the nodes we

visit are monotone increasing, once we pass through from a node v
in the ith block into a node in the (i + 1)th block, we can never go
back to the ith block (i.e., visit elements with rank in the ith block). As such, we can charge the visit to nodes
in π that are next to a element in a different block, to the number of blocks (which is O(log∗ n)).

5

Definition 28.2.12. Consider a path π traversed by a find operation. Along the path π, an element x, such that
p(x) is in a different block, is a jump between blocks.

On the other hand, a jump during a find operation inside a block is called an internal jump; that is, x and
p(x) are in the same block.

Lemma 28.2.13. During a single find(x) operation, the number of jumps between blocks along the search path
is O
(
log∗ n

)
.

Proof: Consider the search path π = x1, . . . , xm, and consider the list of numbers 0 ≤ indexB(x1) ≤ indexB(x2) ≤
. . . ≤ indexB(xm). We have that indexB(xm) = O

(
log∗ n

)
. As such, the number of elements x in π such that

indexB(x) , indexB(p(x)) is at most O(log∗ n).

Consider the case that x and p(x) are both the same block (i.e., indexB(x) = indexB(p(x)) and we perform a
find operation that passes through x. Let rbef = rank(p(x)) before the find operation, and let raft be rank(p(x))
after the find operation. Observe, that because of path compression, we have raft > rbef . Namely, when we
jump inside a block, we do some work: we make the parent pointer of x jump forward and the new parent has
higher rank. We will charge such internal block jumps to this “progress”.

Lemma 28.2.14. At most |Block(i)| ≤ Tower(i) find operations can pass through an element x, which is in the
ith block (i.e., indexB(x) = i) before p(x) is no longer in the ith block. That is indexB(p(x)) > i.

Proof: Indeed, by the above discussion, the parent of x increases its rank every-time an internal jump goes
through x. Since there at most |Block(i)| different values in the ith block, the claim follows. The inequality
|Block(i)| ≤ Tower(i) holds by definition, see Definition 28.2.10.

Lemma 28.2.15. There are at most n/Tower(i) nodes that have ranks in the ith block throughout the algorithm
execution.

Proof: By Lemma 28.2.6, we have that the number of elements with rank in the ith block is at most∑
k∈Block(i)

n
2k =

Tower(i)∑
k=Tower(i−1)+1

n
2k = n ·

Tower(i)∑
k=Tower(i−1)+1

1
2k ≤

n
2Tower(i−1) =

n
Tower(i)

.

Lemma 28.2.16. The number of internal jumps performed, inside the ith block, during the lifetime of the
union-find data-structure is O(n).

Proof: An element x in the ith block, can have at most |Block(i)| internal jumps, before all jumps through x are
jumps between blocks, by Lemma 28.2.14. There are at most n/Tower(i) elements with ranks in the ith block,
throughout the algorithm execution, by Lemma 28.2.15. Thus, the total number of internal jumps is

|Block(i)| · n
Tower(i)

≤ Tower(i) · n
Tower(i)

= n.

We are now ready for the last step.

Lemma 28.2.17. The number of internal jumps performed by the Union-Find data-structure overall is O
(
n log∗ n

)
.

Proof: Every internal jump can be associated with the block it is being performed in. Every block contributes
O(n) internal jumps throughout the execution of the union-find data-structures, by Lemma 28.2.16. There are
O(log∗ n) blocks. As such there are at most O(n log∗ n) internal jumps.

Lemma 28.2.18. The overall time spent on m find operations, throughout the lifetime of a union-find data-
structure defined over n elements, is O

(
(m + n) log∗ n

)
.

Theorem 28.2.8 now follows readily from the above discussion.

6

	Union Find
	Union-Find
	Requirements from the data-structure
	Amortized analysis
	The data-structure

	Analyzing the Union-Find Data-Structure

