
Approximate Nearest Neighbor: Towards Removing the Curse of
Dimensionality

Sariel Har-Peled∗ Piotr Indyk† Rajeev Motwani‡

January 12, 2012

Abstract

We present two algorithms for the approximate nearest neighbor problem in high dimensional
spaces. For data sets of size n living in IRd, the algorithms require space that is only polynomial
in n and d, while achieving query times that are sub-linear in n and polynomial in d. We
also show applications to other high-dimensional geometric problems, such as the approximate
minimum spanning tree.

1. Introduction

The nearest neighbor (NN) problem is defined as follows: Given a set P of n points in a metric
space defined over a set X with distance function D, preprocess P to efficiently answer queries
for finding the point in P closest to a query point q ∈ X. A particularly interesting case is that
of the d-dimensional Euclidean space where X = IRd under some `s norm. This problem is of
major importance in several areas, such as data compression, databases, data mining, information
retrieval, image and video databases, machine learning and signal processing. The diverse interest
in the problem stems from its wide applicability. Specifically, many large data sets consists of
objects that can be represented as a vector of features (i.e., a point in IRd); in such cases, finding an
object similar to a given one can be achieved by finding a nearest neighbor in the feature space. The
number of features (i.e., the dimensionality) ranges anywhere from tens to millions. For example,
one can represent a 1000× 1000 image as a vector in a 1,000,000-dimensional space, one dimension
per pixel.

The problem and its variants is one of the prototypical questions in computational geometry.
Originally posed in the 1960s by Minsky and Papert ([MP69], pp. 222), it has been the subject
of substantial research efforts since then. Many efficient solutions have been discovered for the
case when the points lie in a space of constant dimension. For example, if the points lie in the
plane, the nearest neighbor problem can be solved with O(log n) time per query, using only O(n)
storage [SH75, LT80].

∗Supported by NSF CAREER award CCR-0132901 and AF award CCF-0915984.
†Supported by a Stanford Graduate Fellowship, NSF Award CCR-9357849 and NSF CAREER award CCF-

0133849.
‡Supported by a Sloan Fellowship, and IBM Faculty Partnership Award, an ARO MURI Grant DAAH04-96-1-0007

and NSF Young Investigator Award CCR 9357849.

1



Unfortunately, as the dimension grows, these algorithms become less and less efficient. More
specifically, their space or time requirements grow exponentially in the dimension. In particu-
lar, the nearest neighbor problem has a solution with O(dO(1) log n) query time, but using nO(d)

space ([Mei93], building on [Cla88]). This is partly because the Voronoi decomposition of P , i.e.,
the decomposition of IRd into cells such that all points within each cell have the same nearest
neighbor in P , has complexity nΘ(d). Alternatively, if one insists on linear (or near-linear) storage,
the best known running time bound even for random point sets is of the form min(2O(d), dn), which
is essentially linear in n even for moderate d. Worse still, the exponential dependence of space
and/or time on the dimension (called “curse of dimensionality”) has been observed in practice as
well [WSB98].

The lack of success in removing the exponential dependence on the dimension led many re-
searchers to conjecture that no efficient solutions exists for these problems when the dimension is
large enough (e.g., see [MP69]). At the same time, it raised the question whether it is possible
to remove the exponential dependence on d, if we allow the answers to be approximate. Specif-
ically, in the c-approximate nearest neighbor problem, instead of reporting the point p closest to
q, the algorithm is allowed to report any point within distance c times the distance from q to
p, for some approximation factor c > 1. The appeal of this approach is that, in many cases, an
approximate nearest neighbor is almost as good as the exact one. In particular, if the distance
measure accurately captures some notion of quality, then small differences in the distance should
not matter much. Moreover, an efficient approximation algorithm can be used to solve the exact
nearest neighbor problem, simply by enumerating all approximate nearest neighbors and returning
the closest point encountered.

Our results. In this paper, we provide several results for the approximate nearest problem under
the `s norms for s ∈ [1, 2]. For concreteness, we start with the case of s = 1. Let c = 1 + ε, where
ε > 1/n. We show:

1. A deterministic data structure for (1 + γ)(1 + ε)-NN, for any constant γ > 0, with space and
preprocessing time bounded by O(n log2 n)×O(1/ε)d, and query time O(d log n).

1b. A randomized data structure for (1 + γ)(1 + ε)-NN, for any constant γ > 0, with space and
preprocessing time bounded by nO(log(1/ε)/ε2), and query time polynomial in d, log n and 1/ε.
It is obtained by reducing the dimension d to O(log n/ε2) (using the Johnson-Lindenstrauss
lemma [JL84]), and then utilizing the result above.

2. A randomized data structure for c(1 + γ)-NN, for any constant γ > 0, with space that is sub-
quadratic in n and query time sub-linear in n. Specifically, the data structure uses space
O(dn+n1+1/c log2 n log log n), and has query time of O(dn1/c log2 n log log n). The algorithm
is based on Locality-Sensitive Hashing, see below for further details.

The results can be further extended to `s norm for s ∈ [1, 2]. This is done by using an embedding
from `ds into `d

′
1 , for d′ = O(d log(1/ε)/ε2), which preserves all distances by a factor of 1 + ε [JS82].

The reduction increases the query complexity by an additive term of O(dd′) .
The above results naturally complement each other. The first one (1 and 1b) shows that it is

possible to construct approximate data structures that suffer from only a mild form of the “curse of
dimensionality”. The data structure (1) is the first to support (1+ε)-NN queries in time logarithmic
both in n and 1/ε, while requiring only space that is near linear in n. If ε is strictly separated from

2



zero, then data structure (1b) removes the “curse” completely. Unfortunately, the resulting data
structure is mostly of theoretical interest, since the log(1/ε)/ε2 term in the exponent makes the
data structure highly memory-intensive even for relatively large ε. On the other hand, the second
algorithm (2) provides a more modest improvement in the running time, but the space penalty is
much less severe. As a result, the second algorithm is much more practical when the dimension d
is high.

An additional benefit of the first algorithm is that in fact it provides a low-complexity approx-
imate Voronoi decomposition. Specifically, we show that the algorithm can be used to construct a
decomposition of IRd into O(n log2 n) × O(1/ε)d+1 simple cells, such that for each cell C one can
identify a single point in P that is an (1 + ε)-approximate nearest neighbor for any q ∈ C. This is
an approximate analog of the Voronoi decomposition, which provides such a structure for the case
of the exact nearest neighbor. However, the complexity of our decomposition is much lower than
that of the exact one.

Finally, we show how to use our efficient approximate nearest neighbor algorithm to solve
other proximity problems. In particular, we show how to approximate the Geometric Minimum
Spanning Tree (MST) of a given set on n points by performing near-linear number of calls to an
approximate nearest neighbor data structure. By plugging in the second data structure (based on
Locality-Sensitive Hashing) we can find a c-approximate MST in time O(dn1+1/c log3 n).

Our techniques. Our approximate nearest neighbor data structures are obtained in two steps.
First, we show how to solve a “decision version” of the approximate nearest neighbor problem, that
we term the approximate near neighbor problem1. Here, we are given a fixed radius r, and the goal
is to build a data structure for a given point-set P that for any query q does the following: if there
is a point in P within distance r from q, then it reports a point p′ ∈ P within distance cr from q.
We show how to construct two such data structures. One utilizes the aforementioned approximate
Voronoi decomposition, leading to a fast lookup time and space that is mildly exponential in d.
The second one is based on the notion of locality-sensitive hashing (LSH). Its key idea is to hash
the points in a way that the probability of collision is much higher for objects which are close to
each other than for those which are far apart. Then, one can determine near neighbors by hashing
the query point and retrieving elements stored in buckets containing that point. We show that
such families of hash functions exist for Hamming distance and its variants, and extend them to `s
norms.

In the second step, we show how to reduce the approximate nearest neighbor problem to the near
neighbor problem. A simple way of performing this task is to build several data structures for the
latter problem, with radii r = ∆,∆/c,∆/c2, . . ., where ∆ is the largest possible distance between
the query and the point-set. Unfortunately, in general this approach leads to space complexity
that is not bounded by any function of n. We overcome this problem by providing a more efficient
reduction, which utilizes only some of the radii r. Our reduction multiplies the space complexity
of the near neighbor data structure by a factor of O(log2 n), and the query time by O(log n).
Composing the reduction with the aforementioned algorithms for the approximate near neighbor
problem provides algorithms for the approximate nearest neighbor problem.

1In [IM98a, HP01], this problem was referred to as “Point Location in Equal Balls” (PLEB). In this paper we are
using more recent terminology from [Ind04].

3



Relation to conference papers. Thanks to the amount of time that has passed since the
publication of the initial conference papers [IM98a, HP01] on which this paper is based, we were
able to simplify some of the arguments considerably. As a result, several algorithms in this paper are
simpler, and sometimes more general, than the algorithms in the original papers. In particular, the
reduction from the near to the nearest neighbor presented here is a simplification of the reduction
in [HP01] (which itself was much simpler and more efficient than the reduction in [IM98a]). It
works for general metric spaces, and can be performed using near-linear number of approximate
near neighbor queries. In contrast, the preprocessing algorithm in [HP01] was tailored to `s spaces,
while the algorithm in [IM98a] ran in quadratic time.

We note, however, that a side-effect of our reduction (as well as the reduction of [HP01]) is
that in the approximate near neighbor instances the ratio of the diameter of the point-sets to
search radius r is no longer small (polylogarithmic). The latter property is useful, e.g., when
designing efficient LSH functions for `d1 space. We can ensure a somewhat weaker property directly
by exploiting the “randomized bucketing” approach of [Ber93] (Lemma 3.1). Luckily, the property
suffices for our purpose.

Another result that was a subject to a substantial generalization is the algorithm for computing
an approximate MST. The algorithm outlined in the manuscript [IM98b] relied on a data structure
for maintaining approximately close pairs of points under updates, which was used to simulate
Kruskal’s MST algorithm. Instead, in this paper we present a general reduction from the approxi-
mate MST problem to dynamic approximate near neighbor data structure, that works in arbitrary
metrics. The reduction is still based on Kruskal’s algorithm. However, it has a particularly simple
form, that was inspired by the algorithm of [BOR99] (see the comments in the next subsection).

1.1. Related work

Prior Work. There has been a substantial amount of work on approximate nearest neighbor
problem in the computational geometry literature. However, all work prior to this paper yielded
algorithms that involved factors exponential in d in either the space or in the query time bound. One
of the earliest work on this topic is [AM93] (improved upon in [Cla88] and [Cha97]), who gave an
algorithm with query time 1/εO(d) · log n and space 1/εO(d) · n. Another line of research [AMN+94]
resulted in an algorithm with linear space O(dn) but query time (d/ε)O(d) · log n. Other au-
thors [Ber93, Cha97] considered algorithms with approximation factor polynomial in d, and pro-
vided algorithms that avoid exponential factors in the space and query time bounds. Finally, two
approximation algorithms were given in [Kle97]: one with O(dn log d) space and O(n) query time
and one with nO(d) space and (d + log n)O(1) query time (for fixed ε > 0). The last algorithm, al-
though still suffering from the curse of dimensionality, has significantly influenced the developments
in this paper.

The locality-sensitive hashing approach introduced in this paper has several ancestors in the
literature, which investigated multi-index hashing-based algorithms for retrieving similar pairs of
vectors with respect to the Hamming distance. Although the analytic framework adopted in those
papers made the results generally incomparable to ours, some of the insights are shared. A few of
the papers considered a closely related problem of finding all “close” pairs of points in a data set.
For simplicity, we translate them into the near neighbor framework, since they can be solved by
performing essentially n separate near neighbor queries.

Typically, the hash functions projected the vectors on some subset of the coordinates {1 . . . d}.
In some papers [PRR95, GPY94] the authors considered the probabilistic model where the data

4



points are chosen uniformly at random, and the query point is a “random” point “close” to one of the
points in the data set. A different approach [KWZ95] is to assume that the data set is arbitrary, but
almost all points are far from the query point. Finally, the paper [CR93] proposed an algorithm
which did not make any assumption on the input, and provided a method for determining the
parameters (denoted here by k and L) to achieve desired level of sensitivity and accuracy.

On a related front, the authors of [Bro97, BGMZ97] considered similarity search between sets
(say A,B) using the Jaccard coefficient s(A,B) = |A∩B|

|A∪B| . They proposed a family of hash functions
h(A) such that Pr[h(A) = h(B)] = s(A,B), which can be plugged into our framework. Although
their main motivation was to construct short similarity-preserving “sketches” of sets, they also
discuss methods for performing similarity search using these functions.

Concurrent developments. Parallel to our conference paper [IM98a], the paper [KOR98] pre-
sented an algorithm with bounds similar to our result (1b). Specifically, it provides a data structure
that, in case of the `d1 norm, achieves O(d(log n+1/ε)O(1)) query time using space (dn)O(1/ε2). For
the `2 norm, the query time becomes O(d2(log n+ 1/ε)O(1)). The probabilistic guarantee provided
by their data structure is somewhat stronger: if the construction procedure is correct (which hap-
pens with a controlled probability) then the data structure returns a correct approximate nearest
neighbor to all queries q.2 Although the technical development is somewhat different, the general
approach is similar, in that a form of a randomized dimensionality reduction is used to reduce the
dimension to O(log n/ε2).

In another parallel development, the paper [BOR99] presented a (1+ε)-approximation algorithm
for MST (for ε < 1), with running time O(dn1−aε2) for some absolute constant a > 0.

Further developments. Since the conference versions of this paper have appeared in [IM98a,
IM98b, HP01], there have been many further developments on approximate nearest neighbor search.
In this section, we briefly discuss some of those results. For a more in-depth treatment of the
material see [Ind04].

The reduction from the approximate nearest to the near neighbor problem, and the resulting
approximate Voronoi decompositions were further improved in [AM02] by using a well-separated
pairs decomposition [CK95] to generate the cells needed to construct the approximate Voronoi
diagram (note, that unlike our construction, the number of cells is linear in n but has exponential
dependency on the dimension). This construction uses the same framework as suggested in [HP01].
This result was extended to improve the tradeoff between the dependency on ε on the query time
and space used. See [AMM09] for further details and related work. This construction results in an
approximate Voronoi diagram of complexity n/εO(d).

An alternative construction was suggested in [SSS06]. Building on the reduction from nearest-
neighbor search to near neighbor suggested in [HP01], they reduced the space requirements by a
logarithmic factor. By slightly changing the near-neighbor problem, they reduce the space bound
to linear, which yields an approximate Voronoi diagram of complexity n/εO(d).

The exponent in the space bound achieved by the algorithm (1b) is likely to be close to the
optimal. Specifically [AIP06] showed that any (1 + ε)-approximate data structure in Hamming
space that makes only a constant number of memory accesses needs nΩ(1/ε2) storage (our data

2Intuitively, this guarantee is obtained by setting a probability of failure to be inversely exponential in d, and
applying a union bound over the appropriately discretized set of all queries.

5



structure makes only one memory access). There has been plenty of work on lower bounds for the
exact and approximate nearest neighbor problem, see [Ind04] for an overview.

There has been substantial progress in designing LSH functions for various measures and un-
derstanding their limitations, see [AI08] for an overview. In particular, it is known that for the
`1 norm, the 1/c bound for the running time exponent given in this paper is tight ([OWZ09],
building on [MNP06]). Lower bounds in more general models of computations were provided
in [PTW10]. In contrast, for the `2 norm, one can further reduce the exponent to 1/c2 ([AI06],
building on [DIIM04]). In addition, a different algorithm exploiting LSH functions was proposed
in [Pan06]; this data structure achieves near-linear storage, at the price of increasing the exponent
by a constant factor.

From a more general perspective, the existence of fast approximate nearest neighbor algorithms
for high-dimensional `1 spaces enabled solving this problem for other metrics, by embedding them
into `1 with low distortion. This approach has been useful for variants of edit distance [MS00,
CMS01b, CMS01a, Cor03, CK06, OR07], earth-mover distance [Cha02, IT03, GD05, AIK08] and
other metrics. Lower bounds for such embeddings have been investigated as well [KN05].

Finally, the LSH algorithm and its variants have become popular practical algorithms for similar-
ity search in high dimensions. They have been successfully applied to computational problems in a
variety of areas, including web clustering [HGI00], computational biology [Buh01, BT01], computer
vision (see selected articles in [SDI06]), computational drug design [DGJC06] and computational
linguistics [RPH05].

1.2. Notation

We use (X,D) to denote a metric space defined over X with the distance function D. Typically,
we will use X = IRd for some dimension d > 0 and D(p, q) = ‖p − q‖s for some s ≥ 1. In those
cases, we will assume that d ≤ n, where n = |P |. For convenience, we assume that n is even.

For any point p ∈ X, and r > 0, we use B(p, r) to denote the set {q ∈ X : D(p, q) ≤ r}. For a
parameter r > 0, let UBP (r) = ∪p∈PB(p, r) denote the union of equal balls of radius r centered at
the points of P . Moreover, let CCP (r) be a partitioning of P induced by the connected components
of UBP (r). That is, two points p, q ∈ P belong to the same set in the partitioning if there is a path
contained in UBP (r) connecting p to q; that is, there is a sequence p = p1, . . . , pk = q ∈ P , such
that D(pi, pi+1) ≤ 2r, for i = 1, . . . , k − 1.

Define DP (q) = minp∈P D(q, p). For a parameter c ≥ 1, p′ ∈ P is a c-approximate nearest
neighbor of q if D(q, p′) ≤ cDP (q).

Definition 1.1. The c-approximate nearest neighbor problem (or c-NN) with failure probability f is
to construct a data structure over a set of points P in metric space (X,D) supporting the following
query: given any fixed query point q ∈ X, report a c-approximate nearest neighbor of q in P with
probability 1− f . We use NearestNbr(P, c, f) to denote a data structure solving this problem. We
skip the argument f if it is equal to some absolute constant from (0, 1).

Definition 1.2. The (c, r)-approximate near neighbor problem (or (c, r)-NN) with failure probability
f is to construct a data structure over a set of points P in metric space (X,D) supporting the
following query: given any fixed query point q ∈ X, if DP (q) ≤ r, then report some p′ ∈ P∩B(q, cr),
with probability 1− f . We use NearNbr(P, c, r, f) to denote a data structure solving this problem.
We skip the argument f in this or other definitions involving it if it is equal to some absolute
constant from (0, 1).

6



Note that, according to the above definition, if q /∈ UBP (r) then the algorithm is allowed to
report any point in P , or no point at all (i.e., p′ is null). For convenience, if the reported point p′

is further than cr from q (a condition that the algorithm can check), then we set p′ to null.
Let n = |P |. If the data structure NearNbr(P, c, r) is defined by the context, we will use

T (n, c, r, f) and Q(n, c, r, f) to denote the construction and query time of the data structure, re-
spectively. We will also use S(n, c, r, f) to denote its space complexity. Additionally, if the data
structure supports updates (insertions or deletions of points to or from P ), we denote the update
time by U(n, c, r, f). The time to perform a deletion alone is denoted by D(n, c, r, f). We will skip
the argument r if the time and space functions do not depend on it, and the argument f if it is
assumed to be equal to some small absolute constant (e.g., 1/3).

For the algorithms discussed in this paper, we assume that T (n, c, r, f) = Ω(nd), S(n, c, r, f) =
Ω(nd) and Q(n, c, r, f) = Ω(d), i.e., the time and space bounds are at least linear in the input size.
Moreover, by standard replication arguments, we have T (n, c, f) = O(log 1/f)T (n, c); a similar
relationship holds for the other complexity measures.

Insertions and deletions in randomized data structures. In this paper we present several
randomized data structures over sets of points P that support approximate nearest neighbor queries
and updates. There exist several possible types of guarantees that one can require from such a data
structure. In this paper we consider two models: “oblivious” and “adaptive”.

Both models require the notion of a well-formed sequence. Formally, consider any sequence
S of m operations on the data structures, where the ith operation is of the form (opi, pi), where
opi ∈ {Query,Delete, Insert}. Given two sets of points P and Q, the sequence is called well-formed
with respect to P and Q if it satisfies the following conditions:

(A) Only the points in P can be deleted or inserted.
(B) Only the points in Q can be queried.
(C) A point can be deleted only after it has been inserted first.

If Q (or P , resp.) is the set of all points in the metric space, we skip Q (or P , resp.) in the
above definition.

We start by defining the oblivious model where we require that for any well-formed sequence,
the data structure should be correct with some probability. This is the default model used in this
paper. The formal definition is as follows.

Definition 1.3. A randomized fully dynamic (r, c)-NN data structure Z with failure probability f is
called oblivious if for any sequence S that is well-formed:

Pr[ the last operation in the sequence S is executed correctly by Z ] ≥ 1− f.

Note that one can bound the probability of correctness for all operations in the sequence via
the union bound.

In the adaptive model, the requirements are stronger than in the oblivious case. Specifically,
once a data structure is constructed correctly (which happens with probability 1−f), then it should
correctly execute any well-formed sequence of update and query operations, as long as the points
come from a pre-defined set. This in particular implies that the query and update operations can
depend on the results of prior operations.

7



Definition 1.4. Consider any two sets of points P and Q. A randomized fully dynamic (c, r)-NN
data structure Z with failure probability f is called adaptive with respect to P,Q if

Pr[Z is correct for any sequence S that is well-formed with respect to P,Q] ≥ 1− f.

Miscellaneous. For any P ⊂ X, let P and P ′ be two partitions of P . We say that P refines P ′

(denoted by P v P ′) if for any S ∈ P we have S′ ∈ P ′ such that S ⊂ S′.
We use DH(p, q) to denote the Hamming distance between vectors p and q, i.e., the number of

coordinates i such that pi 6= qi.

2. Reduction from the approximate nearest to near neighbor

2.1. Outline

In this section, we outline the reduction from the approximate nearest neighbor problem to a
sequence of approximate near neighbor problems.

We start from a description of an “ideal” reduction, which assumes a solution to the exact near
neighbor problem (i.e., for c = 1), and also assumes some constraints on the point set. The actual
reduction overcomes these requirements at the price of making it somewhat more complicated.

For simplicity, assume n is even. Let γ ∈ (1/n, 1/2) be a parameter to be determined later (the
lower bound of 1/n ensures that log(n/γ) = O(log n), which simplifies some expressions). Let rmed

be equal to the smallest value of r such that UBP (r) has a component of size at least n/2+ 1, and
let UBmed = UBP (rmed). For the purpose of exposition, we assume that the largest component of
UBmed has size exactly n/2 + 1.

We first construct a NearNbr data structure Zmed,2 = NearNbr(P, c, rmed/2). Given a query
point q, if q is within distance rmed/2 to some point p ∈ P (which can be decided by one near
neighbor query in Zmed,2), then we continue the search for the nearest neighbor recursively in the
connected component of UBmed that contains p. Note that such connected component is unique.
Moreover, observe that the search continues recursively into a subset of P of cardinality at most
n/2 + 1.

Alternatively, if DP (q) ≥ rtop for rtop � rmed (which can be decided by a single near neighbor
query in NearNbr(P, c, rtop)), then q is “far away” from the points of P , and we can continue the
search on a decimated subset of P . Namely, from each connected component of UBmed, we extract
one point of P that lies inside it. This results in a set P ′ ⊂ P that contains at most n/2 points. We
continue the recursive search into P ′. Although continuing the search into P ′ introduces cumulative
error into the search results, we show that the overall error introduced is smaller than 1 +O(γ) if
we set rtop = Θ(nrmed log(n)/γ).

The only case that remains unresolved, is when rmed ≤ DP (q) ≤ rtop. Observe, that rtop/rmed =
O((n log n)/γ). Namely, we can cover the interval [rmed, rtop] by M = log1+γ rtop/rmed = O((1/γ) log (n/γ))
NearNbrs Z1, . . . , ZM , where

Zi = NearNbr(P, c, rmed(1 + γ)i),

for i = 1, . . . ,M .
By performing a binary search on Z1, . . . , ZM we can find, using O(logM) near neighbor queries,

the index i, such that q /∈ UB(P, rmed(1 + γ)i) and q ∈ UBP (rmed(1 + γ)i+1). Namely, we have
found an (1 + γ)-approximate nearest neighbor of q in P .

8



Overall, given a query point, either we found its (1 + γ)-approximate nearest neighbor using
O(logM) = O(log (n/γ)) near neighbor queries, or alternatively, we performed two near neighbor
queries and continued the search recursively into a set having at most n/2+1 points of P . Thus, one
can find an (1+O(γ))-approximate nearest neighbor by performing O(log (n/γ)) NearNbr queries.

This concludes the description of the ideal algorithm. Unfortunately, it suffers from several
problems: (i) it assumes a reduction to the exact near neighbor problem, (ii) it assumes that
a component of size n/2 + 1 always exists, and (iii) it requires computing the value of rmed,
which is expensive. Instead, we will only compute an approximation r∗med to rmed, such that
rmed ≤ r∗med = O(nrmed). This will require defining r∗bot that will play the role of rmed in the above
argument, and readjusting the value of rtop.

2.2. Subroutines

Approximating rmed. Recall that rmed is equal to the smallest value of r such that UBP (r)
has a component of size at least n/2 + 1, and UBmed = UBP (rmed). We start from describing an
algorithm that approximates the value of rmed.

Lemma 2.1. There exists a randomized algorithm that, given a set P of n points and a distance
function D, returns an estimate r∗med such that rmed ≤ r∗med ≤ (n− 1)rmed with probability at least
1/2. The algorithm runs in time O(n).

Proof: The algorithm first selects a point p uniformly at random from P . Then r∗med is defined to
be the median of the set D(p, p′) over p′ ∈ P . Note that the median of n− 1 distances is uniquely
defined.

To prove the lemma, define C ⊂ P to be the set of points inducing the largest connected
component in UBP (rmed). By definition of rmed, we have |C|/|P | > 1/2. Therefore, the point p
belongs to C with given probability. From now on we condition the analysis on this event.

First, we show that rmed ≤ r∗med. Indeed, the point p, together with the n/2 points closest to p,
induces a connected component in UBP (r

∗
med) of size n/2 + 1. By definition, rmed is the smallest

radius that induce such a component in UBP (r
∗
med).

On the other hand, all points in C are within the distance of (n−1)rmed from p. Since |C| > n/2,
it follows that the median of the distances (i.e., r∗med) is at most (n− 1)rmed.

Let c > 1 be the approximation factor of the near-neighbor data structure that we reduce to.
For λ = O(log n/γ) where γ > 0 is a parameter to be determined, we define r∗bot =

r∗med
nc and

r∗top = r∗mednλc. Note that r∗top/r
∗
bot = Θ(n2 log n). Assuming that r∗med is computed correctly, i.e.,

that rmed ≤ r∗med ≤ (n− 1)rmed, then we also have r∗botc < rmed.

Claim 2.2. Suppose that r∗med is computed correctly, i.e., that rmed ≤ r∗med ≤ (n− 1)rmed. Then
• Each connected component of UBP (r

∗
botc) is induced by at most n/2 points.

• There exists at least one connected component C ∈ CCP (r
∗
med) that has size at least n/2 + 1,

and thus there are at most n/2 connected components in CCP (r
∗
med).

Approximating CCP (r). We now describe an algorithm for approximating the connected com-
ponents CCP (r). Specifically, for given parameters r and c, we will show how to compute a
partitioning P of P such that P is a refinement of CCP (cr) and CCP (r) is a refinement of P. The

9



algorithm uses a NearNbr(P, c, r, f) data structure that is adaptive with respect to the query set P
with failure probability at most f , where f is some constant.

The algorithm is presented as Algorithm 2.1. The basic idea of the algorithm is simple: we
compute connected components of a graph with edges of the form (q, p′), where q ∈ P and p′ is a
point output by an approximate NearNbr query on q. This is done by implementing a standard
graph search. However, some care is needed to ensure that the running time of the algorithm is
low, even though the graph itself can have Ω(n2) edges. This is achieved by deleting from NearNbr
the points that have been reached during the search. This ensures that each new edge found by
querying NearNbr leads to a vertex that has not been reached yet.

procedure ApproximateCC(P, c, r)
Construct a NearNbr(P, c, r, f) data structure for P .
P = ∅
E′ = ∅
while P 6= ∅ do

Select any p ∈ P .
Delete p from P and from the associated NearNbr structure.
S = {p}
C = ∅ . C is the next connected component to be computed
repeat

Select any q from S. . We will enumerate all edges going out of q
Add q to C.
Delete q from S.
repeat

Let p′ be the answer of the NearNbr structure on q.
if p′ is not null then

Add {q, p′} to E′.
Delete p′ from P and the associated NearNbr structure.
Add p′ to S.

end if
until p′ is null

until S = ∅ . Connected component C has been completed
Add C to the partition P.

end while
end procedure

Algorithm 2.1: Finding an approximation to CCP (r).

Claim 2.3. The algorithm ApproximateCC computes a partitioning P that refines CCP (cr) and
is refined by CCP (r), i.e., CCP (r) v P v CCP (cr). Its running time is O(T (n, c, f)+nD(n, c, f)+
nQ(n, c, f)) and the probability of failure is at most f .

Interval near neighbor. Our algorithm will make use of a collection of NearNbr data structures
which solve the approximate nearest neighbor assuming the distance from the query to the data
set belongs to a given range. We will refer to this collection as Interval NearNbr, or INearNbr.

10



Lemma 2.4. For 1/2 > γ > 0 and c ≥ 1, given range [a, b], and a point-set P , one can construct
a collection of M = O((log b/a)/γ) NearNbr data structures with approximation parameter c and
failure probability f = 1

3 logM , so that given a query point q, one can decide that either:
(i) DP (q) ≤ a,

(ii) DP (q) ≥ b, or
(iii) find a point p′ ∈ P , so that D(q, p′) ≤ c(1 + γ)DP (q).

The answer returned is correct with probability at least 2/3. If either case (i) or case (ii) occurs
then only two NearNbr queries are carried out, while if case (iii) occurs then O(log(log(b/a)/γ))
NearNbr are performed.

Proof: Let ri = a(1 + γ)i−1/c, for i = 1, . . . ,M , where M = dlog(1+γ)(cb/a)e = O
(
log(cb/a)

γ

)
(since

γ < 1/2). Let Zi = NearNbr(P, c, ri, f) for i = 1, . . . ,M .
Clearly, if a query to Z1 does not return null, we conclude that case (i) has occurred. Similarly,

if a query to ZM returns null, we conclude that case (ii) must have happened. Note that in both
cases we only perform one NearNbr query.

Otherwise, it must be the case that a/c ≤ DP (q) ≤ cb. By performing a binary search on
Z1, . . . , ZM we can find an index i such that, on query q, Zi reports null and Zi+1 reports some point
p′. Clearly, we have

ri ≤ DP (q) ≤ D(q, p′) ≤ cri+1 ≤ c(1 + γ)ri ≤ c(1 + γ)DP (q).

Thus, p′ is a c(1 + γ)-approximate nearest neighbor of q in P .

2.3. The reduction

Data structure construction. Let f = 1
E logn for some constant E > 1. We will use NearNbr

data structures with probability of failure f . The preprocessing algorithm is described as Algo-
rithm 2.2. It can be viewed as building a search tree defined by the recursive calls, with each tree
node containing a subset of points and a collection of NearNbr data structures over that subset.

We now analyze the complexity of the construction algorithm.

Lemma 2.5. The number of points stored in all NearNbr structures in the constructed tree is
O(Mn log n), where M = O(log(n)/γ) is the number of times each point is replicated in INearNbr.

Proof: Let B(n) be the maximum number of points stored in the INearNbr structures. We analyze
B(n) and multiply the result by O(M).

First, observe that when the procedure terminates, we have k′ ≤ n/2 and k′ ≤ k. The latter
inequality holds since cr∗bot ≤ r∗med and therefore P v P ′. Without the loss of generality assume
that n ≥ 3. We have the following recurrence:

B(n) = max
k′,k,n1...nk

k∑
i=1

B(ni) +B(k′) + n (1)

subject to k′ ≤ n/2, k′ ≤ k, 1 ≤ ni ≤ n/2 and
∑k

i=1 ni = n. We show this solves to B(n) ≤
Cn log n+ 1 for some C > 1.

11



procedure Construct(P, c, γ)
if |P | = 1 then

Store P .
return

end if
repeat

Compute r∗med, r∗bot and r∗top (Lemma 2.1 and Claim 2.2).
. Note that the last step succeeds with probability 1/2.

Compute a partitioning P = {P1 . . . Pk} of P s.t. CCP (r
∗
bot) v P v CCP (cr

∗
bot)

(Claim 2.3).
Compute another partitioning P ′ = {P ′

1 . . . P
′
k′} of P s.t. CCP (r

∗
med) v P ′ v CCP (cr

∗
med).

until |P ′| ≤ n/2 and |Pi| ≤ n/2, for all i = 1 . . . k.
for i = 1 . . . k′ do

Select a representative p′i from P ′
i .

Construct INearNbr over P with range [r∗bot/2, r
∗
top] and parameters γ and c (Lemma 2.4).

Continue recursively on P1, . . . , Pk and P ′ = {p′1 . . . p′k′}.
end for

end procedure
Algorithm 2.2: Constructing the approximate nearest neighbor data structure.

The proof is by induction. First, we apply the inductive assumption and substitute for B(ni)
and B(k′) in Equation 1. Since k′ ≤ k we have

B(n) ≤ max
k,n1...nk

k∑
i=1

[Cni log ni + 1] + Ck log k + 1 + n (2)

subject to the same constraints as above.
We relax the assumption that ni’s are integers. Using the convexity of the negated entropy

function H(p) = p log p+(1− p) log(1− p), applied on pairs of ni’s, we observe that for each k, the
maximum is achieved when at most two values ni (say, n1 and n2) are set to a value greater than
1. Since 1 · log(1) = 0, the right hand side of Equation 2 simplifies to

max
k,n1,n2

[Cn1 log n1+Cn2 log n2+ k+Ck log k] +n+1 ≤ C max
k,n1,n2

[n1 log n1+n2 log n2+ k log k] + 2n,

where n1 + n2 + (k − 2) = n, k ≤ n/2 and ni ≤ n/2.
By using convexity again, we upper bound the right hand side by

2C(n/2) log(n/2) + C2 log(2) + 2n = 2C + Cn log n− Cn+ 2n,

which is at most Cn log n if n ≥ 3 and C is large enough.

Corollary 2.6. For any γ > 0, if the space/time complexity functions S(n, c, f) and T (n, c, f) are
convex, then the data structure constructed in Algorithm 2.2 uses O(S(n, c, f)/γ · log2 n) space, and
is constructed in expected time O(T (n, c, f)/γ · log2 n+ n log n[Q(n, c, f) +D(n, c, f)]).

12



procedure Search(P, q)
if |P | = 1 then

Report the point in P
else

Perform an INearNbr query with argument q (Lemma 2.4).
if the outcome is case (i) then

Let Pi be the set such that DPi(q) ≤ r∗bot/2.
Perform Search(Pi, q).

else
if the outcome is case (ii) then

Perform Search(P ′, q).
else

if the outcome is case (iii) then
Report the point p′ found by INearNbr.

end if
end if

end if
end if

end procedure
Algorithm 2.3: Searching for approximate nearest neighbor.

Search. The search procedure follows the divide-and-conquer approach used in the data structure
tree construction. Let q be the query point. The procedure is described in Algorithm 2.3.

Observe that the height of the data structure tree is at most h = log n + O(1). Therefore, we
have the following claim.

Claim 2.7. The search procedure performs at most O(log n) NearNbr queries and distance com-
putations.

Proof: The search procedure encounters case (iii) of an INearNbrquery at most once; this takes
time O(logM). In other cases, it performs only O(1) NearNbr queries per tree level. The time
complexity follows.

Recall that the probability of failure of the NearNbr data structures is equal to f = 1
E logn . We

have:

Lemma 2.8. The search procedure reports a (1 + γ)2c-approximate nearest neighbor of q in P ,
with probability of failure at most O(1/E).

Proof: Assume that the recursive call in the search procedure (in cases (i) or (ii)) reports an a-
approximate nearest neighbor. Depending on the outcome of the INearNbr query, we have the
following three cases:

Case (i) : The search procedure continues on the subset Pi that is guaranteed to contain the
nearest neighbor. Thus, the point reported by the recursive call is a a-approximate nearest
neighbor of q in P .

13



Case (ii) : The search procedure continues on the set P ′ of representatives, with the property that
for any point p ∈ P , there is a point p′ ∈ P ′ such that D(p, p′) ≤ cnr∗med. Moreover, we know
that DP (q) ≥ r∗top = r∗mednλc ≥ λD(p, p′). It follows that if the recursive procedure finds an
a-approximate nearest neighbor of q in P ′, then this point is also a (1 + 1/λ)a-approximate
nearest neighbor of q in P .

Case (iii) : The search procedure determines a (1+ γ)c approximate nearest neighbor directly by
querying INearNbr.

It follows that the search procedure reports an (1+1/λ)h(1+γ)c-approximate nearest neighbor,
where h = log n+O(1) is the height of the data structure tree. We set λ = O(log(n)/γ) such that
(1 + 1/λ)h = 1 + γ.

The above analysis required that each of the O(log n) NearNbr data structures encountered in
the process was correct. The probability that this does not happen is at most O(1/E).

2.4. The result

We now state our main result of this section. The result is stated in two forms: without prepro-
cessing, and with preprocessing.

Theorem 2.9. Let P be a given set of n points in a metric space, and let c = 1+ ε > 1, f ∈ (0, 1),
and γ ∈ (1/n, 1) be prescribed parameters.

Assume that we are given a data structure for the (c, r)-approximate near neighbor using space
S(n, c, f) and with query time is Q(n, c, f), with failure probability f . Then there exists a data
structure for answering c(1 + O(γ))-NN queries in time O(log n)Q(n, c, f) with failure probability
O(f log n). The resulting data structure uses O(S(n, c, f)/γ · log2 n) space.

Theorem 2.10. Let P be a given set of n points in a metric space, and let c = 1+ε > 1, f ∈ (0, 1),
and γ ∈ (1/n, 1) be prescribed parameters.

Assume that we are given a data structure for the (c, r)-approximate near neighbor over P . that
can be constructed in T (n, c, f) time, it uses S(n, c, f) space, its query time is Q(n, c, f), and its
deletion time is D(n, c, f), with failure probability f . Moreover, assume that the data structure is
adaptive with respect to any set of size nO(1).

Then one can build, in expected O(T (n, c, f)/γ · log2 n + [Q(n, c, f) + D(n, c, f)]n log n) time,
a data structure for answering c(1 + O(γ))-NN queries in time O(log n)Q(n, c, f) with failure
probability O(f log n). The resulting data structure uses O(S(n, c, f)/γ · log2 n) space. The number
of points stored in this data structure is O((n/γ) · log2 n).

3. Approximate near neighbor

In this section, we describe data structures for the approximate near neighbor problem (i.e.,
(c, r)-NN) in `ds . They can be used as subroutines in the reduction from the earlier section. Note
that by scaling we can assume r = 1. We start by describing two simplifying reductions, followed
by two algorithms for the approximate near neighbor problem.

14



3.1. Reductions

Coordinate range reduction. We start by describing a method for reducing the range of coor-
dinate values of points in P ∪ {q}, for the case of the `1 norm. It is essentially due to [Ber93], who
used it for the purpose of designing approximate nearest neighbor algorithms with approximation
factor polynomial in d. This subroutine improves the efficiency of the data structures.

Lemma 3.1. Fix a > 1, and suppose there is a data structure for (c, 1)-NN in [0, a]d under the
`1 norm, using space S(n, d, c, r, f) and query time Q(n, d, c, r, f), with failure probability f . Then
there exists a data structure for the same problem over `d1, with asymptotically the same time and
space bounds, and failure probability f + 1/a.

Proof: First, we impose an orthogonal cubic grid on `d1, where each grid cell has side length a. The
grid is translated by a random vector chosen uniformly at random from [0, a]d. Consider any pair
of points p, q ∈ ld1 such that ‖p− q‖1 ≤ 1. The probability that both p and q fall into the same grid
cell is at least

1−
∑
i

|pi − qi|
a

≥ 1− 1

a
.

Therefore, we can proceed as follows:
• For each grid cell C such that C∩P 6= ∅, build a separate data structure for the set C∩P .
• In order to answer a query q ∈ C, query the data structure for C ∩ P .

In this way we reduced the (c, 1)−NN problem for points in `d1 to the case when the coordinates
of points live in a cube of side a. The query time is increased by an additive term O(d), which (as
per the assumptions in Section 1.2) is subsumed by O(Q(n, d, c, r, f)). Since (as per the assumptions
in Section 1.2) S(n, d, c, r, f) is at least linear in dn, it follows that the space bound of the new data
structure remains O(S(n, d, c, r, f)). The probability of failure is increased by an additive term of
1/a.

Hamming cube. Next, we show that the problem can be simplified further, by assuming that
the points live in a low-dimensional Hamming cube.

Lemma 3.2. Fix δ > 0, a > 1, and suppose there is a data structure for (c, r)-NN in a dM -
dimensional Hamming cube, for M = O(ad/δ) using space S(n, d, c, r, f) and query time Q(n, d, c, r, f),
with failure probability f . Then there exists a data structure for (c(1 + δ), 1)-NN for `d1 with the
same time and space bounds, and failure probability f + 1/a.

Proof: By Lemma 3.1 we can assume all points live in [0, a]d. If we round all coordinates of points
and queries to the nearest multiple of δ/d, then the inter-point distance are affected only by an
additive factor of δ. Thus, solving a (c, 1 + δ)-NN on the resulting point-set and queries yields a
solution to (c(1 + δ), 1)-NN over the original space `d1.

In order to solve the (c, 1 + δ)-NN problem, define a scaling factor s = d/δ. Observe that, if we
multiply all coordinates of the data points and queries by s, then all coordinates become integers
in the range {0 . . .M}. In this case, we use a mapping unary : {0 . . .M}d → {0, 1}dM , such that

unary((x1, . . . , xd)) = unary(x1) . . . unary(xd),

where unary(x) is a string of x ones followed by a string of M − x zeros. Observe that the `1
distance between any two points is equal to the Hamming distance of their images [LLR94]. Thus,
it now suffices to solve an (c, (1 + δ)s)-NN on the point-set and queries mapped by Unary.

15



In the following we focus on solving the problem in `s norms for s ∈ {1, 2}. The generalization
to any s ∈ [1, 2] follows from the theorem of [JS82], that states that for any d, γ, there exists
a mapping f : `ds → `d

′
1 , d′ = O(d log(1/γ)/γ2), so that for any p, q ∈ `d1 we have ‖p − q‖s ≤

‖f(p) − f(q)‖1 ≤ (1 + γ)‖p − q‖s. Note that the mapping f is defined for all points in `ds , even if
they are not known during the preprocessing. The mapping f is chosen at random from a certain
distribution over linear mappings from `ds to `d

′
1 , which takes time O(dd′). This allows us to reduce

(c(1 + γ), r)-NN in `ds to (c, r)-NN in `d
′

1 .

3.2. Locality-sensitive hashing

In this section, we describe an algorithm based on the concept of locality-sensitive hashing (LSH).
The basic idea is to hash the data and query points in a way that the probability of collision is
much higher for points that are close to each other than for those which are far apart. Formally,
we require the following.

Definition 3.3. A family H = {h : X → U} is (r1, r2, p1, p2)-sensitive for (X,D) if for any q, p ∈ X
we have

• if D(p, q) ≤ r1 then PrH[h(q) = h(p)] ≥ p1,
• if D(p, q) > r2 then PrH[h(q) = h(p)] ≤ p2.

In order for a locality-sensitive family to be useful, it has to satisfy inequalities p1 > p2 and r1 < r2.
We can solve the (c, r)-NN problem using a locality-sensitive family as follows. We choose r1 = r

and r2 = c · r. Given a family H of such hash functions for these parameters, we amplify the gap
between the “high” probability p1 and “low” probability p2 by concatenating several functions. In
particular, for k specified later, define a function family G = {g : X → Uk} such that g(p) =
(hi1(p), . . . , hik(p)), where hit ∈ H, for I = {i1 . . . ik} ⊂ {1 . . . |H|}. For an integer L we choose L
functions g1, . . . , gL from G independently and uniformly at random. Let Ij denote the multi-set
defining gj . During preprocessing, we store a pointer to each p ∈ P in the buckets g1(p) . . . gL(p).
Since the total number of buckets may be large, we retain only the non-empty buckets by resorting
to “standard” hashing.

To process a query q, we carry out a brute-force search for the neighbor of q in buckets
g1(q), . . . , gL(q). As it is possible that the total number of points stored in those buckets is large,
we interrupt the search after finding the first 3L points (including duplicates). Let p1, . . . , pt be
the points encountered during this process. If there is any point pj such that D(pj , q) ≤ r2 then
we return the point pj , else we return null.

Correctness. The parameters k and L are chosen so as to ensure that with some constant
probability the following two events hold. For any p∗ we define two events:

• E1(q, p
∗) occurs iff either p∗ /∈ B(q, r) or gj(p

∗) = gj(q) for some j = 1 . . . L.
• E2(q) occurs iff the total number of collisions of q with points from P −B(q, r2) is less than

3L, i.e.
L∑

j=1

|(P −B(q, r2)) ∩ g−1
j (gj(q))| < 3L .

Our first result is established for the oblivious case.

16



Theorem 3.4. Suppose there is a (r, cr, p1, p2)-sensitive family H for (X,D), where p1, p2 ∈ (0, 1)

and let ρ = log 1/p1
log 1/p2

. Then there exists a fully dynamic data structure for (c, r)-NN over a set P ⊂ X

of at most n points, such that:
• The query procedure requires at most O(nρ/p1) distance computations, evaluations of the hash

functions from G (that is, O(nρ/p1 · dlog1/p2 ne) evaluations of the hash functions from H),
or other operations; the same bound hold for the updates.

• The data structure uses at most O(n1+ρ/p1) words of space, in addition to the space needed
to store the set P .

The failure probability of the data structure is at most 1/3 + 1/e < 1.

Proof: Let q be a query point, and let P be the set of points at the time when the query is executed.
Assume that there exists p∗ ∈ B(q, r1) (otherwise there is nothing to prove).

Observe that if the events E1(q, p
∗) and E2(q) hold, then the algorithm is correct. Thus it

suffices to ensure that E1 holds with probability P1 and E2 holds with probability P2 such that
both P1 and P2 are strictly greater than half.

Set k = dlog1/p2 ne. Then the probability that g(p′) = g(q) for p′ ∈ P − B(q, r2) is at most
pk2 = 1

n . Thus the expected number of elements from P −B(q, r2) colliding with q under fixed gj is
at most 1; the expected number of such collisions with any gj is at most L. By Markov’s inequality,
the probability that this number exceeds 3L is less than 1/3. Therefore the probability that event
E2(q) holds is P2 ≥ 2/3.

Consider now the probability of gj(p∗) = gj(q). It is bounded from below by

pk1 ≥ p
log1/p2 n+1

1 = p1n
− log 1/p1

log 1/p2 = p1n
−ρ.

Thus the probability that such a gj exists is at least ζ = 1 − (1 − p1n
−ρ)L. By setting L = nρ/p1

we get ζ > 1− 1/e. The theorem follows.

Remark 3.5. In the conference paper [IM98a], the theorem and the proof implicitly assumed that
the probabilities p1 and p2 are bounded away from 0. Although this assumption holds for the LSH
functions described in this paper (see Section 3.2.1), this does not have to be the case in general.
Therefore, in this paper we make the dependence on p1 and p2 explicit. See [OWZ09] for a further
discussion on this point.

We now consider the adaptive case. Let m be an upper bound on the number of queries
performed by the data structure, and let n be an upper bound on the number of points in the
data structure at any time. Compared to the oblivious case, the main difference is that now we
will need to ensure that all possible events E1 and E2 hold simultaneously. To this end we reduce
the probability of failure by constructing I = c log(m + n) instances Z1 . . . ZI of NearNbr using
independent random coins, maintaining the same set P . In order to answer a query q, we query all
Zi’s and return any valid answer.

Lemma 3.6. There exists an absolute constant c such that

Pr[for all p ∈ P and q ∈ Q, there exists t = 1 . . . I such that both E1(q, p) and E2(q) hold] ≥ 1−1/n.

17



Proof: We have

Pr
[
∃p,q∀t(E1(p, q) ∧ E2(q)) does not hold for Zi

]
≤

∑
p,q

Pr
[
∀t(E1(p, q) ∧ E2(q)) does not hold for Zi

]
=

∑
p,q

Pr
[
(E1(p, q) ∧ E2(q)) does not hold for Z1

]I
≤ nm (1/e+ 1/3)I ,

which is at most 1/n for an appropriate absolute constant c > 1.

Since E1 and E2 are monotone properties, if they hold for all the points of P and Q they also
hold for any subsets, we have the following.

Corollary 3.7. Consider any point-set Q of size m, and any point-set P of size n. There exists
an absolute constant c such that the data structure obtained by running c log(n+m) copies of the
algorithm from Theorem 3.4 is adaptive with respect to P and Q with probability of failure at most
1/n.

3.2.1. Hamming metric

In order to use Theorem 3.4 for the Hamming metric, we need to specify the proper family of
hash functions. To this end we use the family of all projections of the bit vector onto one of its
coordinates.

Proposition 3.8. Let D(p, q) be the Hamming metric for p, q ∈ Σd, where Σ is any finite alphabet.
Then for any r, ε > 0, the family H = {hi : hi((b1, . . . bd)) = bi, i = 1 . . . d} is

(
r, rc, 1− r

d , 1−
rc
d

)
-

sensitive.

Remark 3.9. Note that by padding the input and query points with dummy coordinates equal to
0, we can increase d by a constant factor, and ensure that the probabilities p1 and p2 in the above
family are bounded away from 0. This allows us to drop the dependence on these parameters in
the reminder of this paper.

Corollary 3.10. For any c > 1, there exists an algorithm for (c, r)-NN in Hamming metric over
Σd using O(n1+1/c) space (in addition to space needed to store the input point set). The query and
update time are bounded by the time needed to perform O(n1/c) distance computations (each taking
at most O(d) time) and hash function evaluations (each taking O(d/r · log n) time).

Proof: We use Proposition 3.8 and Theorem 3.4. First, we need to estimate the value of ρ = ln 1/p1
ln 1/p2

,
where p1 = 1 − r

d and p2 = 1 − rc
d . Let t = 1−p2

1−p1
, x = 1 − p1. Then ρ = log(1−x)

log(1−tx) ≤ 1/t = 1−p1
1−p2

by
the following claim.

Claim 3.11. For x ∈ [0, 1) and t ≥ 1 such that 1− tx > 0, we have log(1− x)

log(1− tx)
≤ 1

t
.

Proof: Observing that log(1− tx) < 0, the claim is equivalent to t log(1− x) ≥ log(1− tx). This in
turn is equivalent to

f(x) ≡ (1− tx)− (1− x)t ≤ 0.

18



This is trivially true for x = 0. Furthermore, taking the derivative, we see f ′(x) = −t+ t(1−x)t−1,
which is non-positive for x ∈ [0, 1) and t ≥ 1. Therefore, f is non-increasing in the region in which
we are interested, and so f(x) ≤ 0 for all values in this region.

Since ρ = 1−p1
1−p2

= 1
c , the bound on the exponent follows. The running time now follows from

Theorem 3.4 since dlog1/p2 ne = O(d/r · log n). Finally, the space need to store the set P is O(dn).

3.2.2. Extension to normed spaces

In this section, we show how to extend the LSH algorithm to the `1 norm. The algorithm follows
by composing Lemma 3.2 and Corollary 3.10.

Theorem 3.12. For any c > 1, δ > 0, there exists a randomized data structure (with constant
probability of success) for the (c(1+δ), 1)-NN over a set of at most n points in `d1, using O(dn+n1+1/c)
space and with O(d/δ · n1/c log n) query and update time.

Proof: The algorithm follows by composing Lemma 3.2 and Corollary 3.10. The latter lemma is
invoked with r = (1 + δ)d and the dimension of the Hamming cube bounded by O(d2/δ). The
theorem follows by observing that the distance computation (as in the statement of Corollary 3.10)
can be done in O(d) time.

Corollary 3.13. For any c > 1, δ > 0, γ ∈ (1/n, 1), there exists a randomized data structure (with
constant probability of success) for the c(1+γ)(1+ δ)-NN over a set of at most n points in `d1, using
O(dn+ n1+1/c log2(n) log log(n)/γ) space and with O(d/δ · n1/c log2(n) log log(n)) query time.

Proof: Follows by composing Theorem 3.12 and Theorem 2.9, with f = O(1)/ log n.

Corollary 3.14. For any c > 1, δ > 0, there exists a randomized data structure for the (c(1+δ), 1)-
NN over a set of at most n points in `d1, using O(dn+n1+1/c log n) space and with O(d/δ ·n1/c log2 n)
query and update time. For any point-set P of size n and query set Q of size nO(1) the algorithm
is adaptive with respect to P and Q, with the failure probability of at most 1/n.

3.3. Bucketing

In this section, we show how to solve the (c, 1)-NN problem in any norm `ds , for any c = 1 + ε, for
ε ∈ (0, 1/2). The query time is very fast, i.e., O(d). At the same time, the algorithm uses (C/ε)dn
space for some constant C > 1. Furthermore, in case of the `s norm for s ∈ {1, 2} we can use
the Johnson-Lindenstrauss lemma [JL84] to reduce d to O(log n/ε2). This leads to space bound
polynomial in n, for fixed ε > 0.

Assume for now that s = 2. Impose a uniform grid of side length ε/
√
d on IRd. Clearly, the

distance between any two points belonging to one grid cell is at most ε. For each ball Bi = B(pi, 1),
pi ∈ P , define Bi to be the set of grid cells intersecting Bi. Store all elements from ∪iBi in a
hash table, together with the information about the corresponding ball(s). After preprocessing, to
answer a query q it suffices to compute the cell which contains q and check if it is stored in the
table.

We claim that for 0 < ε < 1, |Bi| = O(1/ε)d. To see this, observe that |Bi| is bounded by the
volume of a d-dimensional ball of radius R = 2/ε ·

√
d. We use the following fact [Pis89, page 11].

19



Fact 3.15. The volume V d
s (R) of a ball of radius R in `ds is equal to

(2Γ(1 + 1/s))d

Γ(1 + n/s)
Rd,

where Γ(·) is Euler’s Gamma function. Specifically, V d
2 (R) =

2πd/2

dΓ(d/2)
Rd.

Thus,
∣∣B∣∣ = 2O(d)rd/dd/2 ≤ (C/ε)d. Hence, the total space required is O(n) × O(1/ε)d. The

query time is the time to compute the hash function.
For general `s norms, we set the grid side length to ε/d1/s. The bound on |B| applies unchanged.

Theorem 3.16. For 0 < ε < 1/2, there is an algorithm for (c, r)-NN in `ds using O(n)× O(1/ε)d

space and preprocessing time and O(d) query time.

Dimensionality reduction. If the dimension d is high, we can reduce the space bound using
the Johnson-Lindenstrauss (JL) lemma [JL84]. For `2 we can apply the JL Lemma directly and
reduce d to d′ = O(log n/ε2). This leads to nO(log(1/ε)/ε2) space and preprocessing time, while the
query time3 becomes O(dd′).

For `1 we proceed as follows. First, we apply Lemma 3.2, and reduce the points to dM -
dimensional Hamming space for M = O(d). Since for any two points p, q in the Hamming space
we have DH(p, q) = ‖p− q‖2, we can now apply the dimensionality reduction to the points in the
Hamming space. This increases the query time by an additive term of O(dMd′). This can be
further reduced to O(d), by pre-computing and storing dot products of unary(pl) and the random
vectors used to perform the dimensionality reduction. Since each pl is in the range {0 . . .M}, it
follows that for each j we need to store M = O(d/δ) numbers, for the total storage of O(d2/δ).

Thus, we obtain the following theorem.

Theorem 3.17. For s ∈ {1, 2}, and 0 < ε < 1/2, there is an algorithm for (c, r)-NN in `ds using
nO(log(1/ε)/ε2) space and preprocessing time and O(d log n/ε2) query time.

3.4. Approximate Voronoi diagram

Section 3.3 and Theorem 2.10 reduce the c-NN problem to performing O(log n) lookups in appro-
priate grids. It is natural to ask if one can collapse all these grids together, and obtain some natural
geometric representation of the input point set. In this section we show that this is indeed the case.
Specifically, we show the following theorem.

Theorem 3.18. There is an absolute constant C > 0 such that given a set P of n points in IRd,
and a parameter ε ∈ (0, 1/2), one can compute, in O((n(C/ε)d+1) log3 n) time, an approximate
Voronoi diagram of P , of size O((n(C/ε)d+1) log2 n), such that:

• Every cell in this diagram is either a cube or a set difference of two cubes.
• Every such cell has a point of P associated with it that is a (1 + ε)-approximate nearest

neighbor of all the points of the cell.

3Note that one can instead use Fast Johnson-Lindenstrauss Transform, which provides similar guarantees while
reducing the embedding time [AC09, AC10]. See the papers for the exact results.

20



(A) (B) (C)

Figure 1: (A) The point-set. (B) The generated set of NearNbr instances (different colors corre-
spond to different data points). (C) The approximate Voronoi decomposition.

Proof: We follow the reduction from the approximate nearest to near neighbor in Section 2 combined
with the bucketing approach to approximate near neighbor given in Section 3.3. First, observe that
by scaling and minor readjustment of parameters, we can assume that the side lengths of the grids
used in the reduction are powers of 2. Also, we can assume that they are centered at the origin. As
a result, the grids are nested - a cell in a finer grid is fully contained in some cell of a coarser grid.

Consider instances Z1 . . . Zk of NearNbr generated by the reduction. Let ri be the radius of the
instance Zi, and let ti be the cell side length of the grid corresponding to Zi. For every Zi and
every point p represented by that data structure, we label every such grid cell intersecting the ball
B(p, ri) with p. If a grid cell is marked by several balls, its label is the smallest such ball. In the
end of this process we have a total of O(n(C/ε)d+1 log2 n) grid cells (of different resolution) that
were labeled.

Consider any query point q, and let U be the grid cell of the smallest side length that contains
q. By straightforward but tedious argument following the recursive construction in Theorem 2.10
we have that the label of U is a correct approximate nearest neighbor for q. The decomposition
can be now obtained by superimposing all grids onto the space IRd, where any point takes the label
of the smallest grid cell containing it.

This concludes the description of the approximate Voronoi decomposition construction. In the
reminder of this section, we describe various ways in which the construction can be used for finding
an approximate nearest neighbor.

From the perspective of this paper, the simplest approach is to apply the search algorithm
from Section 2.3. An alternative (described e.g., in [HP01, HPM04, Har11]) is to construct a so-
called compressed d-dimensional quadtree for the grid cells constructed in Theorem 3.18. The data
structure enables locating the smallest grid cell in time O(d log n), which matches the time achieved
by our search algorithm. However, it is possible to improve it further. In particular, consider data
sets with “low” aspect ratio, i.e., the ratio of their diameter to the closest distance between any
two distinct points. For such point sets, one can perform searches in quadtrees in time faster than

21



O(log n). See [HPM04, Har11] for a more detailed description.

4. Minimum Spanning Tree

In this section, we show how to use NearNbr data structure(s) to find a c(1+ γ)-approximate MST
for a set of points in `ds , for s ∈ {1, 2}. Our algorithm is based on Kruskal’s method [CLRS01]: we
keep adding edges between points in approximately increasing order, and merging components that
are connected by the edges. The algorithm proceeds in stages. In the ith stage, we identify pairs of
points that are (approximately) within a distance of ri from each other, and merge the components
connecting the points. This is done using an algorithm ApproximateCC from Algorithm 2.1.

E = ∅
Select q ∈ P
Let r be the maximum value of D(q, p) over p ∈ P
Define ri = r/(1 + γ)M−i, for i = 0 . . .M , where M = log1+γ(n/γ)
Create P = {p1}, {p2}, . . . , {pn}, where P = {p1, . . . , pn}
for i = 0 . . .M do

Invoke ApproximateCC(P, c, ri)
Let E′ be the set of edges generated by the algorithm
for e = {u, v} ∈ E′ do

if u and v belong to different sets Pi, Pj in the partition P then
Merge Pi and Pj in P
Add e to E

end if
end for

end for
Algorithm 4.1: Approximate minimum spanning tree algorithm.

Recall that ApproximateCC(P, c, r) returns a partition P ′ of P such that CCP (r) v P ′ v
ccP (cr).

Lemma 4.1. The above algorithm reports a c(1 + 2γ)-approximate MST.

Proof: Let e1, e2 . . . en−1 be the edges in the set E, ordered by the stage when they were picked
(within the same stage the edges are ordered arbitrarily). Consider the exact Kruskal algorithm,
which examines the edges between points in non-decreasing order, and selects those whose endpoints
belong to different sets; let e∗1, e∗2 . . . e∗n−1 be the edges picked by that algorithm. We will show that
the sum of the costs of et’s is at most c(1 + γ) times the sum of the costs of e∗t ’s.

We start from edges processed at stage i = 0. Since the algorithm collects at most n− 1 edges,
and each edge collected at stage 1 has length at most cr0 = crγ/n, the total cost of edges collected
at this stage is at most crγ. This is at most cγ times the MST cost.

Consider an edge et processed at stage i. We have that the cost of et is greater than ri−1, since
otherwise this edge would have been picked up in the earlier stage. Let l be the largest index such
that the cost of e∗l is at most ri−1. Since all nodes connected by edges e∗1 . . . e∗l are connected before
stage i, it follows that t > l.

22



Since the cost of et is at most cri and the cost of e∗t is greater than ri−1, we have that the cost
of et is at most c(1 + γ) times the cost of e∗t . The lemma follows.

Theorem 4.2. A c(1+2γ)-approximate MST of n points in `d1 can be computed in time O
(
dn1+1/c log3(n)/γ

)
.

Proof: The algorithm makes O(log n) calls to ApproximateCC, each using O(n) query and delete
operations on a data structure provided by Corollary 3.14.

The extension to `ds norms for s ∈ [1, 2] follows from the embedding of [JS82].

Acknowledgments
The authors would like to thank Alexandr Andoni, Jelani Nelson, Steve Oudot, Ashish Goel and
the anonymous referees for their very helpful comments on this paper.

References

[AC09] N. Ailon and B. Chazelle. The fast johnson-lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput., 39:302–322, 2009.

[AC10] N. Ailon and B. Chazelle. Faster dimension reduction. Commun. ACM, 53:97–104,
2010.

[AI06] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 496–505, 2006.

[AI08] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 58:117–122, 2008.

[AIK08] A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover distance over high-dimensional
spaces. In Proc. 19th ACM-SIAM Sympos. Discrete Algorithms, pages 343–352, 2008.

[AIP06] A. Andoni, P. Indyk, and M. Pǎtraşcu. On the optimality of the dimensionality reduc-
tion method. In Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci., pages 449–458,
2006.

[AM93] S. Arya and D. Mount. Approximate nearest neighbor searching. In Proc. 4th ACM-
SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.

[AM02] S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th
ACM-SIAM Sympos. Discrete Algorithms, pages 147–155, 2002.

[AMM09] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. Assoc. Comput. Mach., 57(1):1–54, 2009.

[AMN+94] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM Sympos. Discrete
Algorithms, pages 573–582, 1994.

23

http://www.cs.princeton.edu/~chazelle/
http://www.cs.princeton.edu/~chazelle/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.acm.org/jacm/
http://www.cs.ust.hk/faculty/arya/


[Ber93] M. Bern. Approximate closest-point queries in high dimensions. Inform. Process. Lett.,
45:95–99, 1993.

[BGMZ97] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the web.
In Proc. 6th Int. World Wide Web Conf., pages 391–404, 1997.

[BOR99] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms for
clustering problems in high dimensional spaces. In Proc. 31st Annu. ACM Sympos.
Theory Comput., pages 365–377, 1999.

[Bro97] A. Broder. On the resemblance and containment of documents. In Proc. Conf. Compres.
Complex. Sequences, pages 21–29, 1997.

[BT01] J. Buhler and M. Tompa. Finding motifs using random projections. In RECOMB,
pages 69–s76, 2001.

[Buh01] J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioin-
formatics, 17:419–428, 2001.

[Cha97] T.M. Chan. Approximate nearest neighbor queries revisited. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 352–358, 1997.

[Cha02] M. Charikar. Similarity estimation techniques from rounding. In Proc. 34th Annu.
ACM Sympos. Theory Comput., pages 380–388, 2002.

[CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput.
Mach., 42:67–90, 1995.

[CK06] M. Charikar and R. Krauthgamer. Embedding the Ulam metric into `1. Theo. Comput.,
2(11):207–224, 2006.

[Cla88] K. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput.,
17:830–847, 1988.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[CMS01a] G. Cormode, M. Muthukrishnan, and C. Sahinalp. Permutation editing and matching
via embeddings. In Proc. 28th Internat. Colloq. Automata Lang. Prog., pages 481–492,
2001.

[CMS01b] G. Cormode, S. Muthukrishnan, and S. C. Sahinalp. Permutation editing and matching
via embeddings. In Proc. 28th Internat. Colloq. Automata Lang. Prog., volume 2076 of
Lect. Notes in Comp. Sci., pages 481–492. Springer, 2001.

[Cor03] G. Cormode. Sequence Distance Embeddings. Ph.D. Thesis. University of Warwick,
2003.

[CR93] A. Califano and I. Rigoutsos. Flash: a fast look-up algorithm for string homology. In
Proc. 1st Int. Conf. Intel. Sys. Mol. Bio., pages 56–64, 1993.

24

http://www2.parc.com/csl/members/bern/
http://www.cs.technion.ac.il/~rabani/
http://www.acm.org/jacm/
http://www.acm.org/jacm/


[DGJC06] D. Dutta, R. Guha, C. Jurs, and T. Chen. Scalable partitioning and exploration of
chemical spaces using geometric hashing. J. Chem. Inf. Model., 46, 2006.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. 20th Annu. ACM Sympos. Comput. Geom.,
pages 253–262, 2004.

[GD05] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification
with sets of image features. In Proc. 13th Int. Conf. Comp. Vision, pages 1458–1465,
2005.

[GPY94] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. In
Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., pages 722–731, 1994.

[Har11] S. Har-Peled. Geometric Approximation Algorithms. Amer. Math. Soc., 2011.

[HGI00] T. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the web. In
WebDB Workshop, pages 129–134, 2000.

[HP01] S. Har-Peled. A replacement for voronoi diagrams of near linear size. In Proc. 42nd
Annu. IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.

[HPM04] S. Har-Peled and S. Mazumdar. Coresets for k-means and k-medians and their appli-
cations. In Proc. 36th Annu. ACM Sympos. Theory Comput., pages 291–300, 2004.

[IM98a] P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse
of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 604–613,
1998.

[IM98b] P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse
of dimensionality. A final version of the STOC’98 paper, available at theory.stanford.
edu/indyk/nndraft.ps, 1998.

[Ind04] P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 39,
pages 877–892. CRC Press LLC, 2nd edition, 2004.

[IT03] P. Indyk and N. Thaper. Fast color image retrieval via embeddings. In Work. Statis.
Comput. Theo. Vision, 2003. Held at ICCV.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipshitz mapping into hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

[JS82] W.B. Johnson and G. Schechtman. Embedding lmp into ln1 . Acta Mathematica,
149:71–85, 1982.

[Kle97] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proc.
29th Annu. ACM Sympos. Theory Comput., pages 599–608, 1997.

[KN05] S. Khot and A. Naor. Nonembeddability theorems via fourier analysis. In Proc. 46th
Annu. IEEE Sympos. Found. Comput. Sci., pages 101–112, 2005.

25

http://theory.lcs.mit.edu/~indyk/
http://sarielhp.org
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
theory.stanford.edu/indyk/nndraft.ps
theory.stanford.edu/indyk/nndraft.ps
http://theory.lcs.mit.edu/~indyk/
http://cs.smith.edu/~orourke/
http://theory.lcs.mit.edu/~indyk/


[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate near-
est neighbor in high dimensional spaces. In Proc. 30th Annu. ACM Sympos. Theory
Comput., pages 614–623, 1998.

[KWZ95] R.M. Karp, O. Waarts, and G. Zweig. The bit vector intersection problem. In Proc.
36th Annu. IEEE Sympos. Found. Comput. Sci., pages 621–630, 1995.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. In Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 577–591, 1994.

[LT80] R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM J. Comput.,
9:615–627, 1980.

[Mei93] S. Meiser. Point location in arrangements of hyperplanes. Inform. Comput.,
106:286–303, 1993.

[MNP06] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on locality sensitive hashing.
In Proc. 22nd Annu. ACM Sympos. Comput. Geom., pages 154–157, 2006.

[MP69] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[MS00] S. Muthukrishnan and C. Sahinalp. Approximate nearest neighbors and sequence com-
parison with block operations. In Proc. 32nd Annu. ACM Sympos. Theory Comput.,
pages 416–424, 2000.

[OR07] R. Ostrovsky and Y. Rabani. Low distortion embedding for edit distance. Journal of
the ACM, 54(5), 2007.

[OWZ09] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower bounds for locality sensitive hashing
(except when q is tiny). Arxiv preprint arXiv:0912.0250, 2009.

[Pan06] R. Panigrahy. Entropy-based nearest neighbor algorithm in high dimensions. In Proc.
17th ACM-SIAM Sympos. Discrete Algorithms, pages 1186–1195, 2006.

[Pis89] G. Pisier. The volume of convex bodies and Banach space geometry. Cambridge Uni-
versity Press, 1989.

[PRR95] R. Paturi, S. Rajasekaran, and J. Reif. The light bulb problem. Inform. Comput.,
117(2):187–192, 1995.

[PTW10] R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor search via
metric expansion. In Proc. 51st Annu. IEEE Sympos. Found. Comput. Sci., pages
805–814, 2010.

[RPH05] D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms and nlp: Using
locality sensitive hash functions for high speed noun clustering. In Proc. 43th Ann.
Meet. Assoc. Comput. Linguis., pages 622–629, 2005.

[SDI06] G. Shakhnarovich, T. Darrell, and P. Indyk, editors. Nearest Neighbor Methods in
Learning and Vision. Neural Processing Information Series, MIT Press, 2006.

26

http://www.cs.technion.ac.il/~rabani/
http://www.cs.huji.ac.il/~nati
http://www.cs.technion.ac.il/~rabani/
http://theory.lcs.mit.edu/~indyk/


[SH75] M. I. Shamos and D. Hoey. Closest point problems. In Proc. 16th Annu. IEEE Sympos.
Found. Comput. Sci., pages 152–162, 1975.

[SSS06] Y. Sabharwal, N. Sharma, and S. Sen. Nearest neighbors search using point location in
balls with applications to approximate voronoi decompositions. J. Comput. Sys. Sci.,
72(6):955–977, 2006.

[WSB98] R. Weber, H. J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proc. 24th Intl. Conf. Very
Large Data Bases, pages 194–205, 1998.

27


	Introduction
	Related work
	Notation

	Reduction from the approximate nearest to near neighbor
	Outline
	Subroutines
	The reduction
	The result

	Approximate near neighbor
	Reductions
	Locality-sensitive hashing
	Hamming metric
	Extension to normed spaces

	Bucketing
	Approximate Voronoi diagram

	Minimum Spanning Tree

