Home Bookmarks Papers Blog

# Stabbing pairwise intersecting disks by five points

$\newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\ptq}{q} \newcommand{\pts}{s}$
Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir, and Max Willert.
We present an $O(n)$ expected time algorithm and an $O(n \log n)$ deterministic algorithm to find a set of five points that stab a set of $n$ pairwise intersecting disks in the plane. We also give a simple construction with 13 pairwise intersecting disks that cannot be stabbed by three points.
PDF. : arXiv : DBLP.