Home Bookmarks Papers Blog

On Undecided LP, Clustering and Active Learning

$ \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\kopt}{{{\mathsf{k}}}}% \newcommand{\ptq}{q} \newcommand{\pts}{s}$
Stav Ashur and Sariel Har-Peled.
We study colored coverage and clustering problems. Here, we are given a colored point set where the points are covered by (unknown) $\kopt$ clusters, which are monochromatic (i.e., all the points covered by the same cluster, have the same color). The access to the colors of the points (or even the points themselves) is provided indirectly via various queries (such as nearest neighbor, or separation queries). We show that if the number of clusters is a constant, then one can correctly deduce the color of all the points (i.e., compute a monochromatic clustering of the points) using a polylogarithmic number of queries. We investigate several variants of this problem, including \emph{Undecided Linear Programming}, covering of points by $\kopt$ monochromatic balls, covering by $\kopt$ triangles/simplices, and terrain simplification. For the later problem, we present the first near linear time approximation algorithm. While our approximation is slightly worse than previous work, this is the first algorithm to have subquadratic complexity if the terrain has ``small'' complexity.
PDF. : arXiv.
Last modified: Sat 2022-07-23 20:12:27 UTC 2022 by Sariel Har-Peled