
Approximating Shortest Paths on a Convex Polytope in Three
Dimensions∗

Pankaj K. Agarwal† Sariel Har-Peled‡ Micha Sharir§

Kasturi R. Varadarajan¶

July 19, 2011‖

Abstract

Given a convex polytope P with n faces in IR3, points s, t ∈ ∂P , and a parameter 0 < ε ≤ 1, we
present an algorithm that constructs a path on ∂P from s to t whose length is at most (1+ε)dP (s, t),
where dP (s, t) is the length of the shortest path between s and t on ∂P . The algorithm runs in
O(n log 1/ε+1/ε3) time, and is relatively simple to implement. The running time is O(n+1/ε3) if
we only want the approximate shortest path distance and not the path itself. We also present an
extension of the algorithm that computes approximate shortest path distances from a given source
point on ∂P to all vertices of P .

1 Introduction
The three-dimensional Euclidean shortest-path problem is defined as follows: Given a set of pairwise-
disjoint polyhedral objects in R3 and two points s and t, compute the shortest path between s and t
which avoids the interiors of the given polyhedral ‘obstacles’. This problem has received considerable
attention in computational geometry. It was shown to be NP-hard by Canny and Reif [CR87], and
the fastest available algorithms for this problem run in time that is exponential in the total number of
obstacle vertices (which we denote by n) [RS94, Sha87]. The apparent intractability of the problem has
motivated researchers to develop polynomial-time algorithms for computing approximate shortest paths
and for computing shortest paths in special cases.

In the approximate three-dimensional Euclidean shortest-path problem, we are given an additional
parameter ε > 0, and the goal is to compute a path between s and t that avoids the interiors of

∗Work by the first and the fourth authors has been supported by National Science Foundation Grant CCR-93–01259,
by an Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award, and by matching
funds from Xerox Corporation. Work by the first three authors has been supported by a grant from the U.S.–Israeli
Binational Science Foundation. Work by Micha Sharir has also been supported by National Science Foundation Grants
CCR-94-24398 and CCR-93-11127, by a Max Planck Research Award, and by a grant from the G.I.F. — the German
Israeli Foundation for Scientific Research and Development.

† Department of Computer Science, Duke University, pankaj@cs.duke.edu
‡ School of Mathematical Sciences, Tel Aviv University, sariel@math.tau.ac.il
§ School of Mathematical Sciences, Tel Aviv University, and Courant Institute of Mathematical Sciences, New York

University, sharir@math.tau.ac.il
¶ Department of Computer Science, Duke University, krv@cs.duke.edu
‖Regenerated June 28, 2017.

1

the obstacles and whose length is at most (1 + ε) times the length of the shortest path (we call such
a path an ε-approximate path). Approximation algorithms for the three-dimensional shortest path
problem were first studied by Papadimitriou [Pap85], who gave an O(n4(L + log(n/ε))2/ε2) time algo-
rithm for computing an ε-approximate shortest path, where L is the number of bits of precision in the
model of computation. A rigorous analysis of Papadimitriou’s algorithm was recently given by Choi
et al. [CSY94]. A different approach was taken by Clarkson [Cla87], whose algorithm computes an
ε-approximate shortest path in roughly O(n2 logO(1) n/ε4) time (the complexity of Clarkson’s algorithm
depends also on an additional parameter).

The problem of computing a shortest path between two points along the surface of a single convex
polytope is an interesting special case of the three-dimensional Euclidean shortest-path problem. Sharir
and Schorr [SS86] gave an O(n3 log n) algorithm for this problem, exploiting the property that a shortest
path on a polyhedron unfolds into a straight line. Mitchell et al. [MMP87] improved the running time
to O(n2 log n); their algorithm works for non-convex polyhedra as well. Chen and Han [CH90] gave
another algorithm with an improved running time of O(n2). It is a rather long-standing and intriguing
open problem whether the shortest path on a convex polytope can be computed in subquadratic time.
This has motivated the problem of finding near-linear algorithms that produce only an approximation
of the shortest path. That is, we are given a convex polytope P with n vertices, two points s and t on
its surface, and a positive real number ε. Let πP (s, t) denote any shortest path between s and t along
the surface of P , and dP (s, t) denote its length (πP (s, t) is usually, but not always, unique). We want to
compute a path on the surface of P between s and t whose length is at most (1 + ε)dP (s, t). A recent
result in this direction is by Hershberger and Suri [HS95, HS98]. They present a simple algorithm that
runs in O(n) time, and computes a path whose length is at most 2dP (s, t). Their method does not
seem to extend to yield better approximation factors. As mentioned above, the general approximation
algorithms [Cla87, Pap85] have running times worse than quadratic.

In this paper we present another, relatively simple algorithm that computes an ε-approximate short-
est path (i.e., a path whose length is at most (1 + ε)dP (s, t)), for any prescribed 0 < ε ≤ 1. (There is
no point of specifying ε > 1, since the algorithm of [HS95, HS98] already solves the problem optimally
for ε = 1.) The running time of the algorithm is O(n log 1/ε+ 1/ε3).

The algorithm follows from a sequence of easy but technical lemmas, so we begin with an informal
description of our approach. We first estimate the length d = dP (s, t), using the approximation algorithm
described in [HS95, HS98]. We restrict our attention to a polytope Q that is the intersection of P with
a cube of side ≈ 2d centered at s. (The polytope Q ‘preserves’ the shortest path that we want to
approximate.) We then expand Q by distance r ≈ ε1.5d; call this expansion Qr. We then compute a
convex polytope Q(r), with O(1/ε1.5) vertices, that lies between Q and Qr (i.e., Q ⊆ Q(r) ⊆ Qr), and
such that s, t ∈ ∂Q(r). (The existence of such a polytope Q(r) with only O(1/ε1.5) vertices follows from
a result of Dudley [Dud74].) We now compute an exact shortest path σ along ∂Q(r) between s and t.
A main technical contribution of this paper is to prove that the length of σ is at most (1 + ε)dP (s, t).
If we only want to approximate dP (s, t), we can stop now. Otherwise, we apply an additional step that
projects σ onto ∂P , in a manner that ensures that the length of the projected path is at most the length
of σ, and is thus a good approximation of πP (s, t).

The paper is organized as follows. Section 2 introduces the required terminology and establishes
some initial properties, and Section 3 describes an algorithm for computing Q(r). Section 4 describes
a simple algorithm for computing a path σ between s and t that lies outside P and whose length is at
most (1+ ε)dP (s, t). Section 5 presents a simple technique for projecting σ onto ∂P , without increasing
its length. In Section 6, we derive an extended algorithm for computing approximate shortest-path
distances from a given source point on P to each of its vertices. The extended algorithm runs in time
O((n/ε3) + (n/ε1.5) log n). We conclude in Section 7 by mentioning a few open problems.

2

Figure 1: A cube P and the inflated set Pr

2 Preliminaries
We begin with some terminology and some initial observations. For a face f of the given convex polytope
P , we denote by Hf the plane passing through f . Given a set A ⊆ IR3, and a real number r ≥ 0, let Ar

denote the Minkowski sum A⊕Br, where Br is a ball of radius r about the origin. That is,

Ar =

{
x

∣∣∣∣ infy∈A
|x− y| ≤ r

}
.

For a convex polytope P and for x ∈ ∂P , let Fr(x) =
{
y
∣∣∣ y ∈ ∂Pr, |x− y| = r

}
be the set of points of

∂Pr ‘corresponding’ to x. Clearly, ∂Pr consists of planar faces, each being a translated copy, by distance
r, of some face of P ; of cylindrical faces, each being a portion of a cylinder of radius r about some
edge of P ; and of spherical faces, each being a portion of a sphere of radius r about some vertex of P .
Moreover, (i) if x lies in the relative interior of a face of P , then Fr(x) is a singleton, consisting of the
point lying at distance r from x in the direction of the outward normal of the face; (ii) if x lies in the
relative interior of an edge of P , then Fr(x) is a circular arc of a circle of radius r about x; and (iii) if x
is a vertex of P , then Fr(x) is the entire spherical face associated with x. See Figure 1 for an example
of such an inflated polytope.

For any plane H that avoids the interior of P , the positive half-space H+ bounded by H is the one
containing P . Such a plane is a supporting plane of P if ∂P ∩ H 6= ∅. Given two planes H1, H2 that
avoid the interior of P , the wedge of H1, H2 is W (H1, H2) = H+

1 ∩H+
2 .

For a curve γ ⊂ IR3 and for a, b ∈ γ, we denote by γ(a, b) the portion of γ between a and b. An
outer path of a convex body K is a curve γ connecting two points on ∂K and disjoint from the interior
of K. The length of a curve γ is denoted by |γ|.

A pair ψ = (σ,H) is a supported path of P if σ = (p1, . . . , pm+1) is a polygonal outer path of P
and H = (H1, . . . , Hm) is a sequence of supporting planes of P , such that the line segment pipi+1 is
contained in Hi, for i = 1, . . . ,m, and pipi+1, pi+1pi+2 ⊂ ∂W (Hi, Hi+1), for i = 1, . . . ,m − 1. The
folding angle between pipi+1 and pi+1pi+2, denoted as α(Hi, Hi+1), is π minus the dihedral angle of
the wedge W (Hi, Hi+1), for i = 1, . . . ,m − 1. (Note that this angle depends on the planes Hi, Hi+1,

3

and has nothing to with the actual angle between pipi+1 and pi+1pi+2.) The folding angle of ψ is
α(ψ) =

∑m−1
i=1 α(Hi, Hi+1). We will also write |σ| as |ψ|, and call it the length of ψ. Note that a shortest

path πP (s, t) has a natural supported path associated with it. (In this special case, each folding angle
α(Hi, Hi+1) is larger than or equal to π minus the actual angle between pipi+1 and pi+1pi+2; we call this
latter angle the exterior angle between these segments.)

The following well-known theorem implies that any outer path of P connecting two given points
s, t ∈ ∂P must be of length at least dP (s, t).

Theorem 2.1 (see [Pog73]) Let F be a convex surface bounding a body K, and γ a curve that does
not meet the interior of K and connects points s and t on F . Then the length of γ is at least the shortest
distance dK(s, t) between its endpoints along the surface; it is strictly greater than this distance if the
curve does not lie entirely on the surface.

Lemma 2.2 Let P be a convex polytope in IR3, let s and t be points on ∂P , and let ψ = (σ,H) be a
supported path connecting s and t. Then, for each r ≥ 0, there exists an outer path γ of Pr connecting
a point of Fr(s) to a point of Fr(t), whose length is |ψ|+ α(ψ)r. The curve γ consists of an alternating
sequence of straight segments and circular arcs of radius r.

Proof: Suppose that σ = (s = p1, . . . , pm+1 = t), and H = (H1, . . . , Hm). We replace each segment
pipi+1 of σ by its projection onto the boundary of (H+

i)r, namely, we translate pipi+1 by distance r in the
direction of the outward normal of Hi. We denote the translated segment by qiq′i (where qi is the image
of pi). Clearly, the total length of the new segments is |σ|. We also have q1 ∈ Fr(s) and q′m ∈ Fr(t).

We still need to connect the endpoints q′i and qi+1, for i = 1, . . . ,m − 1. Let Wi = (W (Hi, Hi+1))r.
Clearly, qiq′i, qi+1q

′
i+1 ⊂ ∂Wi. Moreover, both q′i and qi+1 are images of pi+1 under the two projections

onto (H+
i)r and onto (H+

i+1)r, respectively, and thus can be connected by a circular arc of radius r about
pi+1. The length of this arc is clearly r ·α(Hi, Hi+1). The alternating concatenation of the segments qiq′i
and of these circular arcs yields the desired outer path γ. See Figure 1 for an illustration. The total
length of the new path is clearly |ψ| + α(ψ)r. Finally, since Pr ⊂ Wi, for i = 1, . . . ,m − 1, and each
point of γ lies on the boundary of one of these inflated wedges, γ is an outer path of Pr.

Let ψ = (σ,H) be a supported path of P , for σ = (p1, . . . , pm+1) and H = (H1, . . . , Hm). Let
U = (u1, . . . , um) be the sequence of outward unit normals of the planes H1, . . . , Hm. We create a curve
corresponding to ψ on the sphere S of directions in the following manner. Let γi be the shorter great
circular arc connecting ui to ui+1 on S, for i = 1, . . . ,m−1, and let γ =

⋃m−1
i=1 γi. Since |γi| = α(Hi, Hi+1),

it follows that

|γ| =
m−1∑
i=1

|γi| =
m−1∑
i=1

α(Hi, Hi+1) = α(ψ) .

We call γ the curve of directions of ψ.

Lemma 2.3 Let P be a convex polytope, let s and t be points on ∂P , and let 0 < ε ≤ 1. Then there
exists a supported path ψ = (σ,H) of P , such that |ψ| ≤ (1 + ε/2)dP (s, t), and the folding angle α(ψ) is
at most 100/

√
ε.

Proof: Let σ0 = (s = p1, . . . , pm+1 = t) be a shortest path on ∂P from s to t, and let ψ0 = (σ0,H0)
be the corresponding supported path, where H0 = (H1, . . . , Hm). Let γ0 denote the curve of directions
of ψ0 on the sphere S of directions. Cover S by at most 100/ε pairwise openly disjoint spherically-
convex regions, each contained in some spherical cap with angular opening

√
ε; that is, each cap is the

4

intersection of S with a cone with apex at the origin and with opening angle
√
ε/2. This can be easily

done, by covering S with a grid of latitudes and longitudes, with angular spacing of
√
ε/2 between them,

and by placing the caps so that each is centered at a grid point. The number of grid points is⌈
2π√
ε/2

⌉
·
⌈

π√
ε/2

⌉
<

100

ε
,

for 0 < ε ≤ 1. Trimming the caps into pairwise openly disjoint spherically-convex regions is also easy
to do. For simplicity of exposition, we refer to these regions also as ‘caps’. Let C = (c1, . . . , cm) be the
sequence of caps traversed by γ0 in this order. With no loss of generality, we assume that no vertex
of γ0 lies on a boundary of a cap. This can be enforced by an appropriate perturbation of the caps, if
necessary. For each cap c, the intersection γ0 ∩ c is a collection of great circular arcs. Our strategy is to
modify ψ0 into a supported path ψ, such that the intersection of the curve of directions of ψ with each
cap is either empty or a single connected great circular arc.

For a cap c that appears in the sequence C, let i(c), j(c) be the indices of the first and last appearances
of c in C. From the caps c ∈ C such that c ∩ γ0 consists of more than one connected great circular arc,
we pick the cap c such that i = i(c) is minimal, and put j = j(c). Let u and u′ be the first and last
normals in c ∩ γ0. By assumption, this intersection consists of more than one great circular arc, where
the first such arc starts at u and the last arc ends at u′. Let v and v′ be, respectively, the first and last
points on σ0 such that the planes supporting P at v and v′ have outward normals u and u′, respectively.
We ‘shortcut’ σ0 from v to v′ as follows (in fact, this ‘shortcutting’ may increase the length of σ a little).
Draw the planes H, H ′ that support P at v and v′ and have outward normals u and u′, respectively.
Note that the smaller angle between H and H ′ is at most

√
ε. Form the wedge W = W (H,H ′) between

them that contains P . Both v and v′ lie on ∂W . (This holds initially, since both v and v′ lie on ∂P .
Later we will repeat this shortcutting, but in each application the corresponding points v and v′ will
still lie on ∂P .) Let σ̂v,v′ be the shortest path along ∂W from v to v′. As noted above, the larger angle
θ between its two segments is at least the dihedral angle of W , namely ≥ π −

√
ε. This implies, using

the cosine law, that |σ̂v,v′| ≤ (1+ ε/2)|vv′|, where |vv′| is the straight Euclidean distance between v and
v′.1 Hence

|σ̂v,v′ | ≤ (1 + ε/2)|σ0(v, v′)|.
We replace σ0(v, v′) by σ̂v,v′ , and delete from C all elements with indices i + 1, . . . , j. We also add the
plane H ′ to an output sequence H (initialized with the plane H arising in the first cap). It is easily seen
that the curve of directions of the modified path intersects c at a single connected great circular arc. By
repeating this step as necessary, we end up with a supported path ψ = (σ,H), so that the intersection of
the curve of directions of ψ with any cap is either empty or consists of a single connected great circular
arc. Note that our rule for picking the cap to ‘shortcut’ ensures that no portion of the path resulting
from a ‘shortcut’ will participate in a later ‘shortcut’. (In particular, the modified portion of the curve
of directions after a shortcut remains within the current cap, and thus does not penetrate into any cap
that has already been processed.) This implies that each pair of points v, v′ between which the shortcuts
are made lie on ∂P , so the length of the new path is at most (1+ ε/2)|σ0| = (1+ ε/2)dP (s, t). We apply
a final trimming step to σ, by noting that in general σ may contain two consecutive segments on each
plane H ∈ H. We therefore replace each such pair of segments by a single segment (the sequence H
does not change by this trimming).

The final path ψ = (σ,H) satisfies the following properties:
1To see this, let w be the middle vertex of σ̂v,v′ , and put a = |vw|, b = |v′w| and c = |vv′|. Then c2 = a2+b2−2ab cos θ,

or c2 = (a+b)2−2ab(1+cos θ). Since 1+cos θ ≤ 1−cos
√
ε ≤ ε/2, we obtain c2 ≥ (a+b)2

(
1− abε

(a+b)2

)
. Since (a+b)2 ≥ 4ab,

we have c ≥ (a+ b)
√
1− ε/4, and this is easily seen to imply that a+ b ≤ (1 + ε/2)c, for 0 < ε ≤ 1.

5

(i) σ does not meet the interior of P .

(ii) σ has at most 100/ε edges.

(iii) dP (s, t) = |σ0| ≤ |σ| ≤ (1 + ε/2)dP (s, t).

(iv) The curve of directions of ψ intersects each cap in a single (possibly empty) great circular arc.

It now follows that the total folding angle of ψ is bounded by 100/
√
ε.

Remark 2.4 The previous lemma raises the problem whether the folding angle of any shortest path
on a convex polytope is bounded by some absolute constant. An extension of this problem to shortest
paths on arbitrary convex surfaces is mentioned in [Pog73]. Unfortunately, as shown by Pach (personal
communications), this problem has a negative answer. For the sake of completeness, we provide in an
Appendix an improved variant of Pach’s analysis, constructing a family of polytopes with arbitrarily
large folding angles of shortest paths along their boundaries. Another, somewhat weaker and still open
problem is whether the sum of the exterior angles (as defined above) between consecutive segments of
a shortest path on a convex polytope is bounded by an absolute constant. This is a weaker problem
because, as already observed, the exterior angle between two consecutive segments of a shortest path is
at most the folding angle between the faces containing them.

Lemma 2.5 Let P , s, t, and ε be as above, and let r > 0. For any sr ∈ Fr(s), tr ∈ Fr(t), there exists
an outer path of Pr connecting sr with tr, whose length is at most (1 + ε/2)dP (s, t) + 2πr + 100r/

√
ε.

Proof: By Lemma 2.3, there exists a supported path ψ of P connecting s to t of length at most
(1 + ε/2)dP (s, t), such that α(ψ) ≤ 100/

√
ε. By applying Lemma 2.2 to ψ, we obtain an outer path γ

of Pr whose length is at most (1 + ε/2)dP (s, t) + 100r/
√
ε, which connects some point x ∈ Fr(s) with

some point y ∈ Fr(t). Extending γ to connect sr to tr lengthens γ by at most 2πr, so the resulting curve
satisfies the properties asserted in the lemma.

3 Approximating a Polytope
Let Q be a convex polytope in R3, with n vertices, that is contained in a unit ball, and let 0 < µ ≤ 1
be a real parameter. In this section, we present an algorithm to compute a convex polytope Q(µ), with
O(1/µ) vertices, such that Q ⊆ Q(µ) ⊆ Qµ. The algorithm is a straightforward implementation of the
constructive proof of Dudley [Dud74], which asserts the existence of a Q(µ) with O(1/µ) vertices. We
first outline Dudley’s proof, and then describe an efficient implementation of his scheme.

Let C ⊆ IR3 be a convex set. A point-normal pair on C is an ordered pair (p, ηp) such that (1)
p ∈ ∂C, (2) the plane H(p, ηp) that passes through p and whose normal is ηp is a supporting plane of
C, and (3) ηp is an outward normal to C at p. We denote by H+(p, ηp) the halfspace containing C that
is bounded by H(p, ηp). For any δ > 0, we call a collection S of point-normal pairs on C a δ-dense set
if for any point-normal pair (q, ηq) on C, there exists a (p, ηp) ∈ S such that d(p, q) ≤ δ, and the angle
between ηp and ηq is at most δ. We let P (S) denote the intersection of all the halfspaces corresponding
to elements of S, i.e., P (S) =

⋂
(p,ηp)∈S H

+(p, ηp).

Lemma 3.1 (Dudley [Dud74]) Let C be a convex body in IR3, and let A be a δ-dense set on C. Then
P (A) ⊆ C2δ2.

6

Hence, C can be approximated by computing a ‘small’ dense set on C. The existence of such a set
is guaranteed by the following lemma:

Lemma 3.2 (Dudley [Dud74]) Let C be a convex set in IR3 that is contained in a unit ball. Then
there exists a δ-dense set A on C of size O(1/δ2).

Proof: We only give a sketch of the proof, and refer to [Dud74] for full details. Let B be a ball of radius
at most 2, so that for all x ∈ C and for any |y| ≤ 1, one has x+ y ∈ B. Clearly, C ⊂ B.

Let A′ ⊆ ∂B be a collection of points such that for any q ∈ ∂B, there is a p ∈ A′ such that d(p, q) ≤ δ.
Such a set can be easily constructed by ‘covering’ ∂B by a grid of latitudes and longitudes (as in the
proof of Lemma 2.3). Moreover, |A′| = O(1/δ2).

Given a point p ∈ ∂B, let n(p) denote the point-normal pair on C that is formed by taking the unique
point pC ∈ ∂C that is closest to p, and the unit normal in the direction p~pC . Let A = {n(p) | p ∈ A′}.

Dudley shows (see [Dud74]) that A is a 2δ-dense set on C, and this implies the theorem.

Theorem 3.3 Let Q be a convex polytope in R3 contained in a unit ball, let n denote the number of its
vertices, and let µ > 0 be a real parameter. Then one can compute, in O(n + (1/µ) log(1/µ)) time, a
polytope Q(µ) with O(1/µ) vertices such that Q ⊆ Q(µ) ⊆ Qµ.

Proof: Let B be a ball of radius 2 concentric with a unit ball that contains Q. We first compute a set
A′ ⊆ ∂B such that for any q ∈ ∂B, there is a p ∈ A′ so that d(p, q) ≤ √µ/4. Such a set can easily be
calculated in O(1/µ) time, by ‘covering’ ∂B with a regular grid of resolution O(

√
µ), as in the proof of

Lemma 3.2.
Next, we construct, in O(n) time, the Dobkin-Kirkpatrick hierarchical decomposition [DK85, DK90]

of Q, which allows us to compute the closest point in Q to any query point in O(log n) time. Using
this hierarchy, we compute, for each point p ∈ A′, the point-normal pair n(p) on Q corresponding to p,
thereby obtaining the set A = {n(p) | p ∈ A′} in a total of O((1/µ) log n) time.

We next compute the polytope Q(µ) = P (A), which is the intersection of O(1/µ) halfspaces,
O((1/µ) log(1/µ)) time [PS85]. By Lemma 3.1, the polytope Q(µ) satisfies the properties asserted
in the theorem. The overall time needed to compute Q(µ) is

O

(
n+

1

µ
log n+

1

µ
log

1

µ

)
= O

(
n+

1

µ
log

1

µ

)
.

Remark 3.4 See Figure 2 for an example how the approximation polytope of Theorem 3.3 is being
constructed.

4 Approximating dP (s, t)

Let P be a convex polytope in R3, s and t two points on ∂P , and 0 < ε < 1 a real parameter. We present
a simple algorithm for computing an outer path of P from s to t whose length is at most (1+ ε)dP (s, t).
For l > 0, let B(s, l) be the cube of side 2l centered at s, i.e.,

B(s, l) =
{
p
∣∣∣ |px − sx| ≤ l, |py − sy| ≤ l, |pz − sz| ≤ l

}
.

7

P

Q

B

Figure 2: Approximating a convex shape using Dudley proof

Algorithm Approximate-Path
1. Compute a value ∆ such that dP (s, t) ≤ ∆ ≤ 2dP (s, t),

using the algorithm of Hershberger and Suri [HS95, HS98].
Compute Q = P ∩B(s, 2∆).

2. Set r = ε3/2∆/440. Using the scheme described in Sec-
tion 3, compute a polytope Q(r) such that Q ⊆ Q(r) ⊆
Qr.

3. Let H+
s (resp. H+

t) be any halfspace that has s (resp. t)
on its boundary and that contains Q. Compute Q(r) ∩
H+

s ∩ H+
t . Abusing notation, let Q(r) now denote this

new polytope. Note that s, t ∈ ∂Q(r).

4. Compute a shortest path σ between s and t on ∂Q(r),
using the algorithm of Chen and Han [CH90].

If we are interested only in computing an approximate value of dP (s, t), we return |σ|. However,
if we also want to compute an ε-approximate shortest path between s and t on ∂P , we complete the
algorithm by projecting σ on ∂P , using an additional procedure described in Section 5.

We prove that σ is an outer path of P whose length is at most (1 + ε)dP (s, t), and then analyze the
running time of the algorithm.

Lemma 4.1 The algorithm Approximate-Path returns an outer path of P between s and t whose
length is at most (1 + ε)dP (s, t), and which consists of O(1/ε1.5) segments.

Proof: First observe that the cube B(s, 2∆) is chosen large enough so that if π is a shortest path
between s and t on P (and so |π| < 2∆), π lies in the interior of B(s, 2∆), and is therefore also a
shortest path on Q. By Lemma 2.5, there exists an outer path ξ of Qr connecting any two points
sr ∈ Fr(s) and tr ∈ Fr(t), whose length is at most (1 + ε/2)dP (s, t) + 2πr+100r/

√
ε. As a consequence

of step (3) of the algorithm, we may choose sr and tr such that the segments ssr and ttr do not intersect

8

the interior of Q(r). The path obtained by concatenating the segments ssr and trt to the beginning
and the end of ξ, respectively, is an outer path of Q(r) connecting s and t. It follows from Theorem 2.1
that the length of the shortest path σ on Q(r) between s and t, computed by the algorithm, is at most
|ξ|+ |ssr|+ |ttr|. Since |ssr|, |ttr| ≤ r, we obtain, by the choice of r,

|σ| ≤ (1 + ε/2)dP (s, t) + (2π + 2)r + 100r/
√
ε ≤ (1 + ε)dP (s, t).

Observe that any outer path of Q lying inside B(s, 2∆) is also an outer path of P . Since 0 < ε < 1,
the above inequality implies that σ lies in the interior of the cube B(s, 2∆). The path σ is clearly an
outer path of Q, therefore σ is an outer path of P too.

The polytope Q(r) has O(1/ε1.5) faces, and any shortest path intersects a face of the polytope along
(at most) a single segment, therefore σ consists of at most O(1/ε1.5) segments.

Lemma 4.2 The running time of the algorithm Approximate-Path is O(n + 1/ε3), where n is the
number of faces of P .

Proof: Hershberger and Suri’s algorithm [HS95, HS98] runs in O(n) time. The polytope Q can be
calculated in linear time. By Theorem 3.3, Q(r) can be computed in O(n + (1/ε1.5) log 1/ε) time. The
number of faces in Q(r) is O(1/ε1.5), and the algorithm by Chen and Han used in step 4 runs in quadratic
time. Hence, computing σ takes O(1/ε3) time. Summing up all these bounds, the overall running time
of the algorithm is O(n+ 1/ε3), as asserted.

Putting these lemmas together, we obtain the following result.

Theorem 4.3 Given a convex polytope P with n faces, two points s and t on ∂P , and a parameter
ε > 0, a polygonal outer path of P between s and t whose length is at most (1 + ε)dP (s, t), and which
consists of O(1/ε1.5) segments, can be computed in time O(n+ 1/ε3).

5 Projecting an Outer Path to a Polytope
In this section we present an algorithm for projecting a polygonal outer path σ of a polytope P onto
the surface of P . The output of the algorithm is a polygonal path σ(P) such that:

(i) |σ(P)| ≤ |σ|.

(ii) σ(P) ⊂ ∂P .

(iii) σ and σ(P) have the same pair of endpoints.

(iv) The number of segments of σ(P) is at most n, the number of faces of P .

We assume that ∂P is triangulated, so each face is a triangle. If σ1 and σ2 are two paths such that
the terminating point of σ1 and the starting point of σ2 coincide, we denote by σ1‖σ2 the path obtained
by concatenating σ1 to σ2.

Let σ be the given polygonal outer path of P , connecting s ∈ ∂P to t ∈ ∂P and consisting of m
segments. We direct σ from s to t. For a face f of P that contains s, let w be the last intersection point
of σ with Hf (the plane supporting f). Clearly, the path σ′ = sw‖σ(w, t) is not longer than σ, and
σ′ ⊆ H+

f . We denote by Project-on-Face(f ,σ) the procedure that returns w, the last intersection
point of σ with Hf .

The projection algorithm is presented in Figure 3. An illustration of a single step of the main loop
of the algorithm is shown in Figure 4.

9

Algorithm Project-Path(P, σ)
Input: A convex polytope P and an outer path σ
Output: A path σ(P) on the boundary of P

begin
s← starting-point(σ), t← end-point(σ)
σcurr ← σ, σ(P)← ∅
while s 6= t do

(A) f ← any face of P containing s and not yet visited
w ← Project-on-Face(f, σcurr)
sv ← sw ∩ f
σ(P)← σ(P)‖sv, σcurr ← vw‖σcurr(w, t)
s← v

end while
return σ(P)

end Project-Path

Figure 3: Algorithm for projecting an outer path onto the boundary of a polytope

Lemma 5.1 The operation (A) in the algorithm Project-Path never fails, i.e., there always exists a
face adjacent to the current s that was not yet visited.

Proof: Assume, for the sake of contradiction, that (A) does fail at some point, call it p. Let F denote
the collection of faces of P that contain p, and let K =

⋂
f∈F H

+
f . Let q be the last intersection point

of σcurr with ∂K. Note that q 6= p, for otherwise σcurr(p, t) has to move from p away from at least
one halfspace H+

f , for some f ∈ F , which is impossible, since, after f has been processed, σcurr is
always contained in H+

f . Note also that q 6= t, for otherwise the algorithm would have terminated when
processing any face f ∈ F such that t ∈ Hf . It is also easily checked that q lies on the original path
σ. Let f be a face such that q ∈ Hf , and let ξ be the last intersection point of the segment ~pq with f .
Since t ∈ ∂P ⊆ K, and t 6= q, the subpath σ(q, t) \ {q} lies in the interior of K ⊆ H+

f , and therefore q
is also the last intersection point of σ with Hf . Since σcurr is an outer path of P , t ∈ ∂P , and K is the
same as P in a sufficiently small neighborhood of p, it is easy to see that pq lies on f in a sufficiently
small neighborhood of p, which implies that ξ 6= p.

Suppose f has already been visited. Then let σ′ be σcurr immediately before f was visited, and let
s′q′ be the segment that was added to σ(P) while processing f . Notice that q is also the last intersection
point of σ′ with Hf , because q ∈ σ, and thus σcurr(q, t) = σ′(q, t). Therefore σ′(s′, q), the initial portion
of σ′ up to q, would have been replaced, at the step where f is processed, by the segment q′q. Moreover,
the algorithm runs in a manner that guarantees that the portion of σcurr on Hf can only be shortened
(or eliminated) in subsequent steps of the algorithm. It follows that σcurr(p, q) = pq ⊆ q′q and thus
ξ 6= q′ ∈ q′q. By construction, q′ is the last intersection point of the segment s′q with f . Therefore the
segment q′q does not intersect f except at q′, which is false, since ξ ∈ f . This contradiction implies that
f has not yet been visited, and thus completes the proof of the lemma.

Lemma 5.2 The output path σ(P) produced by algorithm Project-Path(P ,σ) satisfies the properties
(i)–(iv).

10

s v

σ
curr

w

f

t

Figure 4: A single step of the main loop of Project-Path; σcurr crosses Hf at three marked points,
the last of which is w.

Proof: The algorithm Project-Path performs at most n iterations (Lemma 5.1 implies that the
algorithm terminates properly). Each iteration of the while loop adds one segment to the polygonal
output path σ(P), thus σ(P) consists of at most n segments. Each such segment is contained in ∂P , thus
σ(P) ⊂ ∂P . Since σ(P) is generated from σ by performing a sequence of calls to Project-on-Face,
it follows that |σ(P)| ≤ |σ|. Finally, σ(P) and σ clearly have the same pair of endpoints.

We next present a reasonably efficient technique for implementing the procedure
Project-on-Face. Note that σcurr, with the possible exception of the first edge, is a subpath of σ,
ending at t, and that each iteration in Project-Path replaces an initial subpath of σcurr by a line
segment, possibly also truncating the first surviving segment of the preceding path. Set b = dlogme+1.
We divide σcurr into two subpaths σ1 and σ2; σ1 is an initial subpath of σcurr, consisting of at most b
edges, and σ2 is the rest of σcurr. We compute the Gaussian diagram of Conv(σ2), where Conv(σ2) is
the convex hull of σ2. (See [CEGS93] for a discussion of the Gaussian diagram of a convex polytope.)
We preprocess the Gaussian diagram into a data structure for answering point-location queries in the
diagram. The preprocessing takes O(m logm) time, and each point-location query takes O(logm) time
[PS85]. The subpaths σ1, σ2 change as the algorithm progresses, as will be described below. Initially, σ1
consists of the first b edges of σ (and σ2 consists of all the remaining segments).

Let f ∈ P be a query face, and let n denote the outward normal of f . We locate n in the Gaussian
diagram of Conv(σ2), and thus obtain the vertex ξ ∈ Conv(σ2) that the supporting plane of Conv(σv)
with outward normal n touches. If ξ ∈ int (H+

f), that is, Hf does not intersect σ2, we traverse σ1
and compute the last intersection point of σ1 with Hf in O(b) = O(logm) time. σcurr is updated as
described in the algorithm Project-Path. σ2 and its starting point ξ remain the same, and we set
σ1 = σcurr(s, ξ).

If Hf intersects σ2, we traverse σ2, compute the last intersection point of σ2 with Hf , in O(m) time,
and update σcurr as described in the algorithm Project-Path. If σcurr has at most b edges, then we
set σ1 = σcurr and σ2 = ∅; otherwise, σ1 consists of the first b edges of σcurr, and σ2 consists of the
remaining edges. We compute the Gaussian diagram of Conv(σ2), in O(m logm) time, and preprocess
it in additional O(m logm) time for point-location queries, as described above.

This Project-on-Face procedure is clearly correct. We call a query short if the last intersection

11

point of σ with Hf lies in σ1, and long otherwise. A short query takes O(logm) time, and a long
query takes O(m logm) time. Suppose the last intersection point of σcurr with Hf lies on the (k + 1)-st
edge of σcurr. Then the first k edges of σcurr are deleted, the (k + 1)-st edge of σcurr is truncated, and
possibly a new edge is added in front of the trimmed (k + 1)-st edge; see Figure 4. Therefore, the
number of edges in σcurr is reduced by k − 1. Since k ≥ b for a long query, each long query reduces the
number of edges in σcurr by at least b− 1, thereby implying that the number of long queries is at most
m/(b− 1) = m/dlogme. The while loop in Project-Path is executed at most n times, therefore the
overall running time of the algorithm is O(n logm+m2). We have thus shown:

Theorem 5.3 Let P be a convex polytope with n faces, and let σ be a polygonal outer path of P consisting
of m segments. One can construct, in O(n logm +m2) time, a polygonal path σ′ ⊂ ∂P with the same
endpoints as σ, such that |σ′| ≤ |σ|, and the number of edges of σ′ is at most n.

The algorithm described in the previous section returns an outer path with at most O(1/ε1.5) edges.
We can thus project it onto ∂P in additional O(n log 1/ε+ 1/ε3) time. Combining this with the bound
in Theorem 4.3, we obtain the main result of the paper:

Corollary 5.4 Let P be a convex polytope with n faces, s and t two points on ∂P , and ε > 0 a real
parameter. Then a polygonal path between s and t on ∂P , consisting of at most n segments, whose
length is at most (1 + ε)dP (s, t), can be computed in time O(n log 1/ε+ 1/ε3).

6 Approximate Shortest-Path Distances to All Vertices
We can generalize the above algorithm to compute approximate shortest-path distances from a given
source point s on the polytope P to each of its vertices, in time O((n/ε3)+ (n/ε1.5) log n) time. That is,
for each vertex v of P , the algorithm computes a real value ∆v such that dP (s, v) ≤ ∆v ≤ (1+ε)dP (s, v).
Hershberger and Suri [HS95, HS98] present another algorithm that runs in O(n log n) time and computes
crude approximations of the shortest path distances from s to all the vertices of P ; for each vertex v,
the distance computed is between dP (s, v) and about 2.4dP (s, v). The first step of our algorithm applies
this procedure and obtains these crude approximations. Next we compute, in O(n) time, the Dobkin-
Kirkpatrick hierarchical decomposition of the polytope P [DK85, DK90], which enables us to compute
the closest point in P to a query point in O(log n) time.

To compute an approximate shortest path from s to a vertex v of P , we use the following slight
variation of the algorithm Approximate-Path. Let ∆v ≤ 2.4dP (s, v) be the crude approximation
of the shortest path distance dP (s, v), obtained by the Hershberger-Suri algorithm. Let rv = cε3/2∆v,
where c is a sufficiently small constant, and let Q(v) = P ∩B(s, 2∆v). As in the Approximate-Path
algorithm, we use Dudley’s scheme to compute a polytope Q(rv), with O(1/ε1.5) vertices, such that
Q(v) ⊆ Q(rv) ⊆ Qrv . However, we cannot afford to explicitly compute each of the Q(v)’s, so we have
to carry out the steps in the algorithm of Theorem 3.3 without working with Q explicitly. To this
end, we observe that, by slightly modifying the query procedure, the Dobkin-Kirkpatrick hierarchical
decomposition of P itself can actually be used to compute the closest point in Q(v) = P ∩ B(s, 2∆)
to a query point ξ, in O(log n) time, as follows. We first compute the point p on ∂P closest to ξ. If
p ∈ B(s, 2∆), we are done. Otherwise, the closest point to ξ in Q lies on the boundary of B(s, 2∆).
More precisely, as is easily checked, this point lies on a face of the box B(s, 2∆). Dobkin and Kirkpatrick
[DK90] have shown that, for a query plane h and a query point ξ, the point in h ∩ P closest to ξ can
be computed in O(log n) time, using the hierarchical decomposition of P . A slight variant of their
procedure can also compute the point in f ∩ P closest to ξ, where f is a face of B(s, 2∆). Repeating

12

this procedure for all six faces of B(s, 2∆), the closest point in Q to a query point ξ can be computed
in O(log n) time. The remaining steps in the algorithm of Theorem 3.3 are readily modified, yielding
an O(1

ε1.5
(log n+ log 1

ε
))-time procedure for computing Q(rv).

Using Q(rv), we proceed, as in the Approximate-Path algorithm, to compute an outer path
between s and v whose length is at most (1 + ε)dP (s, v). Summing up, this procedure takes O((1/ε3) +
(1/ε1.5) log n) time for a single vertex of P . Iterating over all vertices, we get an algorithm that computes
approximate distances from s to all vertices of P in O((n/ε3) + (n/ε1.5) log n) time.

7 Conclusions
In this paper we have presented a simple and efficient algorithm for computing approximate shortest
paths on the surface of a convex polytope in 3-space. We believe that our algorithm can be extended to
convex piecewise-algebraic surfaces. More specifically, let P be a convex surface consisting of n faces,
each of which has “constant description complexity”, in the sense that each face is a semialgebraic set
defined by a constant number of polynomial equalities and inequalities of constant maximum degree.
Then we conjecture that a (1+ε)-approximate shortest path between two points on ∂P can be computed
in time that is close to linear in n for any fixed ε > 0, perhaps even in time O(n/ε1.5 + 1/ε3), under an
appropriate model of computation. We leave this as an open problem for further research.

Since the original submission of this paper several interesting developments concerning approximate
shortest paths on polyhedral surfaces have taken place. Har-Peled [Har99b] showed that a variant of the
algorithm presented in this paper can be used to preprocess a convex polytope P with n faces in time
O(n), so that a (1 + ε)-approximation of the length of the shortest path between any two query points
on ∂P can be computed in time O((log n)/ε1.5 + 1/ε3) (where ε is also part of the query input). In a
companion paper, Har-Peled [Har99a] presented an algorithm for preprocessing a convex polytope or a
polyhedral surface P , with n faces and a fixed source point s in ∂P , into a near-linear-size map that
approximates the shortest-path map on P from s (which might have quadratic complexity) [MMP87], in
the sense that approximate shortest-path queries from s can be answered by performing point-location
queries in this map. This algorithm also extends to the case of approximate shortest-path maps in a
3-dimensional polyhedral environment. Varadarajan and Agarwal [VA96] gave the first subquadratic
algorithm that approximates the shortest path on a polyhedral terrain within a constant factor.

We conclude by mentioning a couple of open problems.

• Can an ε-approximate shortest path between two points on a polyhedral terrain, or on the surface
of a nonconvex polyhedron, be computed in time that is near-linear in the number of faces?

• Finally, can the exact shortest path between two points on a convex polyhedron be computed in
near-linear time? in subquadratic time?

Acknowledgments
The authors wish to thank Boris Aronov, Imre Bárány, Ken Clarkson, Alon Efrat, Joe Malkevitch,
János Pach, Subhash Suri, and Boaz Tagansky for helpful discussions concerning the problems studied
in this paper and related problems. In particular, the construction in the Appendix of shortest paths
with arbitrarily large folding angles is a variant of a construction initially provided by János Pach.

The authors also wish to thank the referees for their comments and suggestions.

13

References
[CEGS93] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Diameter, width, closest line

pair and parametric searching. Discrete Comput. Geom., 10: 183–196, 1993.
[CH90] J. Chen and Y. Han. Shortest paths on a polyhedron. Proc. 6th Annu. Sympos. Comput.

Geom. (SoCG), 360–369, 1990.
[Cla87] K. L. Clarkson. Approximation algorithms for shortest path motion planning. Proc. 19th

Annu. ACM Sympos. Theory Comput. (STOC), 56–65, 1987.
[CR87] J. F. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems.

Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), 49–60, 1987.
[CSY94] J. Choi, J. Sellen, and C. K. Yap. Approximate Euclidean shortest path in 3-space. Proc.

10th Annu. Sympos. Comput. Geom. (SoCG), 41–48, 1994.
[DK85] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of

convex polyhedra. J. Algorithms, 6: 381–392, 1985.
[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra

– a unified approach. Proc. 17th Internat. Colloq. Automata Lang. Program., vol. 443. 400–
413, 1990.

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3): 227–236, 1974.

[Har99a] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. SIAM J.
Comput., 28(4): 1182–1197, 1999.

[Har99b] S. Har-Peled. Approximate shortest paths and geodesic diameter on a convex polytope in
three dimensions. Discrete Comput. Geom., 21(2): 217–231, 1999.

[HS95] J. Hershberger and S. Suri. Practical methods for approximating shortest paths on a convex
polytope in IR3. Proc. 6th ACM-SIAM Sympos. Discrete Algs. (SODA), 447–456, 1995.

[HS98] J. Hershberger and S. Suri. Practical methods for approximating shortest paths on a convex
polytope in IR3. Comput. Geom. Theory Appl., 10(1): 31–46, 1998.

[MMP87] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM
J. Comput., 16: 647–668, 1987.

[Pap85] C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Inform.
Process. Lett., 20: 259–263, 1985.

[Pog73] A. V. Pogorelov. Extrinsic Geometry of Convex Surfaces. Vol. 35. Translations of Mathe-
matical Monographs. Amer. Math. Soc., 1973.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[RS94] J. H. Reif and J. A. Storer. A single-exponential upper bound for finding shortest paths in
three dimensions. J. Assoc. Comput. Mach., 41(5): 1013–1019, 1994.

[Sha87] M. Sharir. On shortest paths amidst convex polyhedra. SIAM J. Comput., 16: 561–572, 1987.
[SS86] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:

193–215, 1986.

14

http://dx.doi.org/10.1007/BF02573973
http://dx.doi.org/10.1007/BF02573973
http://link.springer.com/journal/454
http://dx.doi.org/10.1145/98524.98601
http://dx.doi.org/10.1016/0196-6774(85)90007-0
http://dx.doi.org/10.1016/0196-6774(85)90007-0
http://dx.doi.org/10.1137/S0097539797325223
http://dx.doi.org/10.1007/PL00009417
http://dx.doi.org/10.1007/PL00009417
http://link.springer.com/journal/454
http://www.acm.org/jacm/

[VA96] K. R. Varadarajan and P. K. Agarwal. Approximating Shortest Paths on a Polyhedron.
manuscript. 1996.

Appendix: Folding Angles of Shortest Paths Can Be Large
In this appendix we show that the folding angle of a shortest path on the boundary of a convex polytope
in 3-space can be arbitrarily large. In fact, we establish a lower bound on the maximum possible folding
angle, which is linear in the number of facets of the polytope. As already mentioned, the construction
given here is a variant of a construction of János Pach (which has a somewhat weaker lower bound),
and we are grateful to him for allowing us to include this construction in this paper.

For each integer n, define a polytope Pn as follows. Pn is the intersection of n tetrahedra, T1, . . . , Tn,
each of which has one horizontal facet lying on the xy-plane, and its opposite vertex lies on the positive
z-axis. The horizontal facet fi of Ti is an equilateral triangle, centered at the origin, whose sides have
orientations 0, 2π/3 and 4π/3, for even i, or π/3, π and 5π/3, for odd i.

Let α(Ti) denote the dihedral angle between fi and any of its other facets, and let β(Ti) denote the
angle between fi and any of the non-horizontal edges of Ti. Note that tanα(Ti) = 2 tan β(Ti).

We construct the tetrahedra Ti one after the other. Suppose we have already constructed T1, . . . , Tn,
for n ≥ 1 (the construction of T1 will be detailed below). We assume inductively that the highest vertex
of Pn is the top vertex of Tn (this clearly holds for n = 1).

Let h be a horizontal plane, such that the halfspace h+ lying above h cuts Pn in a tetrahedron (which
is a top portion of Tn). Let g = Tn ∩ h, and let g′ be the equilateral triangle that lies in h and has the
vertices of g as the midpoints of its edges (g′ is twice as large as g and is rotated by π/3). Construct Tn+1

so that α(Tn+1) < β(Tn) and its non-horizontal facets pass through the edges of g′. The construction
implies that the top vertex of Tn+1 lies below the top vertex of Tn, so the inductive invariant concerning
the top vertices of the Pj’s continues to hold for n+ 1 too.

It is easy to verify, using induction on n, that the following properties are satisfied:

(i) Each non-horizontal facet of each Ti contributes a facet to Pn.

(ii) For each 1 < i < n, the three non-horizontal facets of Ti form a ‘band’ around ∂Pn, which
disconnects the non-horizontal facets of the Tj’s with j < i from the non-horizontal facets of the
Tj’s with j > i.

An illustration of P3 is shown in Figure 5.
Now let P ′

n be the reflected copy of Pn through the xy-plane, and let Qn = Pn ∪ P ′
n. Let s be the

top vertex of Pn and t be the bottom vertex of P ′
n. Properties (i) and (ii) imply that any path from s

to t along ∂Qn must visit at least one facet of each Ti. Moreover, the path must make a transition from
a facet of Ti to a facet of Ti−1, for each i = 2, . . . , n.

We next define the angles of the tetrahedra Ti as follows. Let δ > 0 be an arbitrarily small number.
Set βn = π

2
− δ, and let αn be the angle that satisfies tanαn = 2 tan βn. Suppose αj has already been

defined. Then set βj−1 =
(
π
2
+ αj

)
/2, and define αj−1 by tanαj−1 = 2 tan βj−1. Having defined this

sequence of angles, we construct the Ti’s so that α(Ti) = αi.
By construction, the unit normals of the facets of Ti are

(sinαi cos 2jπ/3, sinαi sin 2jπ/3, cosαi) , for j = 0, 1, 2, if i is even

or
(sinαi cos(2j + 1)π/3, sinαi sin(2j + 1)π/3, cosαi) , for j = 0, 1, 2, if i is odd.

15

Figure 5: The polytope P3: a top view and a side view

Hence, the smallest possible folding angle θi between a facet of Ti−1 and a facet of Ti (which is equal to
the angle between the normals to these facets) satisfies

cos θi =
1

2
sinαi−1 sinαi + cosαi−1 cosαi =

1

2
sinαi−1 sinαi + sin

(π
2
− αi−1

)
sin

(π
2
− αi

)
≤ 1

2
+
(π
2
− αi−1

)(π
2
− αi

)
≤ 1

2
+ δ2 ,

since π
2
− δ ≤ αi ≤ π/2. That is, θi ≥ arccos

(
1
2
+ δ2

)
, and this lower bound can be made arbitrarily

close to π/3, provided δ is chosen sufficiently small.
To sum up, we have shown that the folding angle of any path on ∂Qn from s to t is lower-bounded

by an angle close to 2(n− 1)π/3, which is linear in the number of facets of Qn.

Remark. Pach’s construction is originally presented in terms of the dual polytopes of (variants of) the
Pn’s. We felt, however, that it is more instructive to describe the actual polytopes explicitly.

16

	Introduction
	Preliminaries
	Approximating a Polytope
	Approximating dP(s,t)
	Projecting an Outer Path to a Polytope
	Approximate Shortest-Path Distances to All Vertices
	Conclusions

