Problem 1
(By Chandra.)

Let $G = (V, E)$ be an undirected simple graph. Let $T \subseteq V$ be a set of terminals; we refer to $V \setminus T$ as non-terminals. For $u, v \in T$ we define the element connectivity $\kappa'(u, v)$ as the maximum number of $u - v$ paths that are disjoint in the non-terminals and edges of G; note that the paths can share terminals. See figure for an example.

(A) Given $G = (V, E)$, $T \subseteq V$ and $u, v \in T$, describe an efficient algorithm to compute $\kappa'(u, v)$.

(B) Prove that for $u, v, w \in T$, $\kappa'(u, v) \geq \min\{\kappa'(u, w), \kappa'(v, w)\}$.
Figure 1: In the graph above $\kappa'(u,v) = 3$ and $\kappa'(u,w) = \kappa'(v,w) = 2$.

Problem 2
(By Chandra.)

(A) For a $n \times n$ matrix M, its determinant is the quantity

$$\det(M) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^{n} M_{i,\sigma(i)},$$

where S_n is the set of all permutations of $\{1, \ldots, n\}$, and $\text{sgn}(\sigma)$ is +1 if σ is even and −1 otherwise.\(^1\)

Let M be such a matrix of integer numbers, that can be represented using U bits. Prove that the number of bits required to represent $\det(M)$ is bounded by a polynomial in U.

(B) Let M be a $n \times n$ matrix of rational numbers, that can be represented using U bits. Prove that the number of bits required to represent $\det(M)$ is bounded by a polynomial in U. (You can assume (A) in proving this part.)

(C) The Linear-Programming problem is to solve a system of the form

$$\max \ c^t x, \quad Ax \leq b,$$

where A is a $m \times n$ rational matrix and c and b are $n \times 1$ rational vectors.

In the decision version we are given an additional rational number K and the given instance A, c, b, K is a YES instance if there is a real-valued $n \times 1$ vector x^* such that $c^t x^* \geq K$ and $Ax^* \leq b$. It is NO instance otherwise (either if there is no feasible solution for $Ax \leq b$ or if the maximum value is strictly less than K).

Prove that the decision version of Linear-Programming is in NP. Claim any facts from linear algebra that you find useful or need (in particular, you can assume (A) and (B))

\(^1\)A permutation is even if it can be converted in a even number of switches to the identity permutation.
in your solution). You cannot use the fact that there is a polynomial-time algorithm for Linear-Programming. Note also that numerical operations on integers require time that depends on the length of their binary representation (for example, adding two integers with \(m \) and \(n \) bits takes \(O(m + n) \) time).

Problem 3
(By Sariel.)

(A) [20 Points] Prove, by induction, the Cauchy-Schwarz inequality, that is, for any real numbers \(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \), we have that

\[
\sum_{i=1}^{n} x_i y_i \leq \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}.
\]

(Note, that you need to provide here a carefully written formal proof.)

(B) [5 Points] Let \(G = (V, E) \) be a graph over \(n \) vertices, with the property that \(\sum_{v \in V} (d(v)) \leq \binom{n}{2} \). Prove that \(|E| = O(n^{3/2}) \).

Problem 4
(By Jeff.)

Let \(A[1..n] \) be a fixed array of integers between 1 and \(n \). For any other array \(I[1..k] \) of integers between 1 and \(n \), let \(A(I) \) denote the \(k \)-element array whose \(j \)th entry is \(A[I[j]] \), for all \(j \).

Recall that an array \(I[1..k] \) is increasing if \(i < j \) implies \(I[i] < I[j] \). If the arrays \(I \) and \(A(I) \) are both increasing, then \(I \) is the sequence of indices of an increasing subsequence of \(A \); in this case, we say that \(I \) is 2-increasing. If the arrays \(I \), \(A(I) \), and \(A(A(I)) \) are all increasing, then we say that \(I \) is 3-increasing. More generally, for any positive integer \(r \), we say that \(I \) is \(r \)-increasing if \(A(I) \) is \((r - 1) \)-increasing. Finally, we say that \(I \) is \(\infty \)-increasing if \(I \) is \(r \)-increasing for every positive integer \(r \).

For example, if \(A = [3, 1, 4, 1, 5, 9, 2, 6, 7, 3] \), then the index array \(I = [3, 5, 6] \) is 3-increasing:

\[
I = [3, 5, 6]^\checkmark \quad A(I) = [4, 5, 9]^\checkmark \quad A(A(I)) = [1, 5, 7]^\checkmark \quad A(A(A(I))) = [3, 5, 2]^\checkmark
\]

The robustness of \(I \) is the largest integer \(r \) such that \(I \) is \(r \)-increasing, or \(\infty \) if \(I \) is \(\infty \)-increasing. A non-increasing array has robustness 0.

(A) Warmup: Given an array \(A[1..n] \), sketch an efficient algorithm to find the longest 2-increasing subsequence of \(A \).
(B) Find the smallest function $f(n)$ with the following property: For all arrays $A[1..n]$ and $I[1..k]$ with $k \leq n$, if I is $f(n)$-increasing, then I is ∞-increasing. (We are looking for a statement of the form: If an array I is 2^n-increasing then it is ∞-increasing. Naturally, you are looking for $f(n)$ which is as small as possible.) (Hint: Consider the special case $k = 2$.)

(C) Given two arrays $A[1..n]$ and $I[1..k]$, sketch an efficient algorithm to determine the robustness of I with respect to A.

(D) Given an array $A[1..n]$, sketch an efficient algorithm to find the longest ∞-increasing subsequence of A.