Problem 1
Recall that a function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is said to be computable if there is a Turing machine \(M_f \) such that on input \(k \), \(M_f \) halts with \(f(k) \) written on its tape. For a function \(f : \mathbb{N} \rightarrow \mathbb{N} \) define \(\text{Range}(f) = \{ f(k) \mid k \in \mathbb{N} \} \).

Let \(f \) be a 1-to-1, computable function such that \(\text{Range}(f) \) is recursive. (Note, in general, computability of \(f \) only guarantees that \(\text{Range}(f) \) is recursively enumerable.) Let \(g \) be a computable function that dominates \(f \), i.e., there is \(n_0 \) such that for all \(n > n_0 \), \(f(n) \leq g(n) \). Prove that \(\text{Range}(g) \) is also recursive.

Problem 2
Given a CFG \(G \) over \(\{a, b\} \), show that checking if there is a string with equal number of \(a \)s and \(b \)s in \(L(G) \) is decidable. You may want to use the following result due to Rohit Parikh, that is described below.

The Parikh image of a string \(w \in \Sigma^* \) is a function \(\psi_w : \Sigma \rightarrow \mathbb{N} \) that maps each symbol \(a \in \Sigma \) to the number of times it appears in \(w \). For example, for \(w = aaababab \) we have \(\psi_w : \{a, b\} \rightarrow \mathbb{N} \) defined by \(\psi_w(a) = 5 \) and \(\psi_w(b) = 3 \). The Parikh image of a language \(L \) is the set of functions \(\psi_L = \{ \psi_w \mid w \in L \} \).

Parikh's Theorem: Given a CFG \(G \), there is an algorithm that constructs a DFA \(A \), such that \(\psi_{L(G)} = \psi_{L(A)} \).

Problem 3
Consider "limit-TMs" which are TMs with a read-write input tape, and a write-only output tape, such that every transition specifies an output of either 0 or 1 on the output tape. Thus, every computation of \(M \) on some input word \(w \) necessarily produces an infinite binary sequence which we denote by \(M(w) \).

If the sequence \(M(w) \) converges to 1, we say that \(M \) accepts \(w \) in the limit. If \(M(w) \) converges to 0, we say that \(M \) rejects \(w \) in the limit. A language is limit-acceptable iff there is a TM that accepts each \(w \in L \) in the limit. A language is limit-decidable iff it is limit-acceptable and furthermore, for each \(w \notin L \), \(M \) rejects \(w \) in the limit.

1. Is the diagonal language \(L_d = \{ i : M_i \text{ does not accept } i \} \) limit-decidable, limit-acceptable but not limit-decidable, or neither limit-acceptable nor limit-decidable? Prove your answer correct.
2. Give a language that is limit-acceptable but not limit-decidable. Prove your answer correct.

Problem 4

Recall that satisfiability of CNF formulas, SAT is NP-complete, and the corresponding counting problem #SAT is #P-complete. Here we consider a related language DNFSAT and #DNFSAT. A DNF formula consists of a disjunction (OR) of several terms, where each term is a conjunction (AND) of several literals. A DNF formula \(\phi \) belongs to DNFSAT if there is an assignment to its variables such that \(\phi \) is satisfiable. #DNFSAT is the problem of computing the number of satisfying assignments to a given DNF formula.

1. What is the lowest complexity class you can place DNFSAT in? (Consider only complexity classes L, NL, P, NP, PSPACE and their co-classes.)

2. Show that #DNFSAT is #P-complete (w.r.t polynomial time Turing reductions).

3. For sets \(S_1, \ldots, S_m \subseteq \{0,1\}^n \), suppose for each \(i = 1, \ldots, m \), \(a_i := |S_i| \) is given, and also an oracle is given which, for any \(i \in [m] \) and any \(J \subseteq [m] \) gives an approximation of \(p_{i,J} := \Pr_{x \in \{0,1\}^n}[x \in \bigcup_{j \in J} S_j | x \in S_i] \). More precisely, on input \((i, J, \epsilon)\) for \(i \in [m] \), \(J \subseteq [m] \) and \(1/\epsilon \) a polynomial, the oracle returns \(b(i, J, \epsilon) \in [p_{i,J} - \epsilon(m,n), p_{i,J} + \epsilon(m,n)] \).

 Give a polynomial time algorithm that, given a polynomial \(p \), outputs a number in the range \(|\bigcup_{i=1}^m S_i| (1 \pm 1/p(mn)) \).

4. Show that #DNFSAT can approximated within a \((1 + 1/poly)\) multiplicative factor, with (say) probability \(\frac{2}{3} \), in polynomial time. (Polynomials in the size of the formula.) You can use the result from the previous sub-problem.