
Qualifying Examination
Theoretical Computer Science

Friday, October 19, 2018

Part II: Automata and Complexity

Instructions:

1. This is a closed book exam.

2. The exam has four problems worth 25 points each. Read all the problems carefully to
see the order in which you want to tackle them. You have all day (9am–5pm) to solve
the problems.

3. Write clearly and concisely. You may appeal to some standard algorithms/facts from
textbooks unless the problem explicitly asks for a proof of that fact or the details of
that algorithm.

4. If you cannot solve a problem, to get partial credit write down your main idea/approach
in a clear and concise way. For example you can obtain a solution assuming a clearly
stated lemma that you believe should be true but cannot prove during the exam.
However, please do not write down a laundry list of half-baked ideas just to get partial
credit.

5. In problems with multiple parts, if you cannot solve a part, you can still solve subse-
quent parts (assuming that claims from earlier parts are true) and get partial credit.

May the force be with you.

Problem 1: A string of the form xx for some x ∈ {0, 1}∗ is called a square. Consider
the following DFA-Accepts-Some-Square problem: given a DFA M with n states over the
alphabet {0, 1}, decide whether L(M) contains a square.

(a) First show that if L(M) contains a square, it contains a square of length at most 2n2.

[Hint: Suppose xx ∈ L(M). Let q0 be the initial state, and qm be the state after
reading x starting from q0. For each i = 1, . . . , |x|, consider the pair of states after
reading the first i symbols of x starting from q0 and starting from qm. . . ]

(b) Show that DFA-Accepts-Some-Square is in P.

[Hint: Modify your proof of (a) and build a directed graph with O(n2) vertices.]
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Problem 2: In this problem, by “Turing machine”, we mean a deterministic 2-tape Turing
machine with a read-only input tape and a read-write work tape. In each step such a machine,
reads the current cell of the input and work tapes, and based on the current control state,
changes its control state, writes a symbol on the work tape, and moves both input and work
tape heads, independently, either left or right. A computation of such a machine is said to
be non-erasing if in each step, if a non-blank symbol is read on the work tape then the same
symbol is written back. In other words, the only symbols that are “changed” during the
computation are blank symbols on the work tape.

NonErasing is the following problem: Given a Turing machine M and input w, answer
“yes” if M ’s (unique) computation on w is non-erasing. Prove that NonErasing is not recur-
sively enumerable. Hint: Can you prove that for any Turing machine M , there is another
Turing machine M ′ that “simulates” M in a non-erasing manner on all inputs?

Problem 3: Consider the following two versions of the “k-SUM” problem:

Version 1. Given a set S of n elements and a “target” number t, where each
element is an m-bit number (i.e., an integer in [0, 2m)), do there exist k distinct
elements s1, . . . , sk ∈ S such that s1 + · · ·+ sk = t?

Version 2. Given k sets S1, . . . , Sk with a total of n elements, and a “tar-
get” number t, where each element is an m-bit number, do there exist k (not
necessarily distinct) elements s1 ∈ S1, . . . , sk ∈ Sk such that s1 + · · ·+ sk = t?

It is not difficult to see that Version 2 reduces to Version 1 (by adding some leading bits
to the numbers). In this problem, you will give a randomized reduction from Version 1 to
Version 2.

(a) Given k elements, suppose that we assign each element with a random color indepen-
dently chosen from {1, . . . , k2}. Show that the probability that all elements receive
different colors is at least a positive constant.

(b) Now show that if Version 2 can be solved in T (k, n,m) time, then Version 1 can be
solved in O(T (k2, n,m + O(log k))) time by a randomized algorithm with correctness
probability at least 0.99.

Problem 4: In the Orthogonal Vectors (OV) problem, we are given two sets of n d-
dimensional 0-1 vectors A ⊆ {0, 1}d and B ⊆ {0, 1}d with |A| = |B| = n, and we want

to decide whether there are vectors ~a ∈ A and ~b ∈ B that are orthogonal, i.e., such that
〈~a,~b〉 =

∑
i aibi = 0. The Orthogonal Vectors Conjecture (OVC) of fine-grained complexity

states that for every δ > 0 there is a c ≥ 1 such that OV cannot be solved in n2−δ time
on instances with d = c · lg n. This problem will explore OVC and how it relates to other
conjectures in fine-grained complexity.

In particular, one formulation of the Strong Exponential Time Hypothesis (SETH) states
that for every ε > 0 there is a k and a c such that k-SAT for n variables and cn clauses requires
time Ω((2− ε)n). (The input to k-SAT is a CNF formula where clauses have length k.)
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(a) Show that OV can be solved in O(n2poly(d)) time.

(b) Show that OV can be solved in O(n2O(d)) time.

(c) Show a reduction from k-SAT with n variables and m clauses to OV with O(2n/2)
vectors in m dimensions, that runs in time O(2n/2poly(m)). [Hint: partition the n
variables into two groups of size n

2
each.]

(d) Conclude that SETH implies OVC.
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