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Department of Applied Mathematics and
Institute of Theoretical Computer Science (ITI)

Charles University
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Abstract

In the one-round Voronoi game, theF R ST player placesn sites inside a unit-squareQ.
Next, theSCN D player placesn points insideQ. The payoff for a player is the total area of
the Voronoi region ofQ under their control. In this paper, we show that theSCN D player can
always place the points in such a way that it controls 1/2+ α fraction of the total area ofQ,
whereα > 0 is a constant independent ofn.

1 Introduction

Competitive facility locationstudies the placement of sites by competing market players.Overviews
of different models are the surveys by Friesz et al. [TFM89], Eiselt and Laporte [EL89] and Eiselt
et al. [ELT93].

TheVoronoi gameis a simple geometric model for competitive facility location, where a sites
“owns” that part of the playing arena that is closer tos than to any other site. We consider a two-
player version with a square arenaQ. The two players,F R ST andSCN D, place points intoQ.
The goal of both players is to capture as much of the area ofQ as possible, where the region cap-
tured byF R ST is R(F ,S) = {x∈Q : dist(x,F ) < dist(x,S)} and the region captured bySCN D
is R(S ,F ). HereF is the set of points ofF R ST , S is the set of points ofSCN D, dist(·, ·) is the
Euclidean distance and vol(·) is the Lebesgue measure. In other words, if we construct the Voronoi
diagram [Aur91] ofF ∪S , then each player captures the Voronoi regions (restricted toQ) of his
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point set and is rewarded proportionate to the measure of his captured set. Thepayoff for F R ST
is vol(R(F ,S))/vol(Q) and the payoff forSCN D is vol(R(S ,F ))/vol(Q). (Of course, we can
re-scale the boardQ so that vol(Q) = 1, but in the subsequent considerations a different scaling
seems more intuitive.)

Ahn et al. [ACC+01] had studied a one-dimensional Voronoi game, where the arenaQ is a line
segment, and the game takesn rounds. In each round,F R ST andSCN D place one point each.
Ahn et al. showed thatSCN D then has a winning strategy that guarantees a payoff of 1/2+ ε,
with ε > 0, but thatF R ST can forceε to be as small as he wishes. On the other hand, if only a
single round is played, whereF R ST first placesn points, followed bySCN D placingn points,
thenF R ST has a winning strategy. In fact, ifQ = [0,2n] andF R ST plays on the odd integer
points{1,3,5, . . . ,2n−1}, thenSCN D ’s payoff is less than 1/2. So there is a set of “key points”
in the one-dimensional arena, whose possession guarantees winning the game.

In this paper we show that no such set of “key points” exists in the two-dimensional case. More
strongly, for each setF of n points, there is a setS of n SCN D points such thatSCN D ’s payoff
is at least 1/2+α, for an absolute constantα > 0 andn large enough.

From now on, letQ be the square[0,
√

n]2, of arean, so that the average area perF R ST ’s
point is 1. To win the game,SCN D needs to findn points such that their average area is at least
1/2+α. We first show that it is very easy to findonesuch point—in fact, arandompoint inQ\F
has this property. Since this is the key idea of our proof, we first present it in a modified setting
where the arenaQ has the topology of a torus, eliminating boundary effects. We then proceed to
prove this result for the square with its standard topology, showing how we can handle the square
boundary, and proceed to prove the result forn SCN D points. Finally, we show that the result
generalizes to higher dimensions as well.

2 The torus case

To present the (simple) main idea of our proofs in a setting free of technical complications due to
effects near the boundary ofQ, we assume in this section that the squareQ has the topology of a
torus. To be precise, we identify the left and right edges ofQ, as well as the top and bottom edges,
while retaining the normal Euclidean metric inQ.

Proposition 1 There exist constantsβ > 0 and n0 such that for every n-point setF in the square
arena Q with torus topology, n≥ n0, there is a point x∈Q\F with vol(R(x,F ))≥ 1

2 +β. In fact,
x can be selected uniformly at random:E[vol(R(x,F ))] ≥ 1

2 + β, whereE[·] denotes expectation
with respect to uniform random selection of x∈Q.

Proof: If there is a pointp ∈ Q such that dist(p,F ) >
√

n/4, the proposition holds: With
constant probability the pointx will grab a constant fraction ofn. If n is large enough,1 this is more
than, say, 1. In the following we can therefore assume that no such pointp exists.

Let IA denote the characteristic function of a setA.

E[vol(R(x,F ))] =
1

vol(Q)

∫
Q

∫
Q

IR(x,F )(y)dydx

1This is the only restriction onn in this proof. When we start to take boundary effects into account, we will have
to assumen to be larger by several orders of magnitude.
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=
1
n

∫
Q

vol({x∈Q : y∈ R(x,F )})dy

by Fubini’s theorem.
A point y∈ Q lies in R(x,F ) if and only if dist(y,x) ≤ r = dist(y,F ), and so the set{x∈ Q :

y ∈ R(x,F )} = {x ∈ Q : dist(x,y) ≤ r}. Sincer ≤
√

n/4, this is a disc of radiusr centered aty
(possibly wrapping around the edges ofQ).

Our integral becomesπn
∫

Qdist(y,F )2dy, a quantity that we denote byF0(F ). We split it into
integrals overF ’s Voronoi cells: F0(F ) = π

n ∑w∈F
∫

cellF (w) dist(y,w)2dy, where cellF (w) is the
region ofw in the Voronoi diagram ofF restricted toQ.

Among all convex bodiesC⊂ R2 of areaa, the integral
∫
C dist(y,w)2dy is minimized by the

discC0 of areaa centered atw (somewhat informally, moving a piece ofC closer tow decreases the
integral, and such a move is possible for anyC but that disc). Moreover, for later use we note that
if C is a convexk-gon then

∫
C dist(y,w)2dy≥ (1+εk)

∫
C0

dist(y,w)2dy with a suitable smallεk > 0.
The value of that integral over such a disc is

∫
C0

dist(y,w)2dy =
∫ √

a/π

0
r2 ·2πr dr =

a2

2π
.

Let’s use the notationaw = vol(cellF (w)). Then,

F0(F ) =
π
n ∑

w∈F

∫
cellF (w)

dist(y,w)2dy≥ 1
2n ∑

w∈F
a2

w ≥
1
2n

(
∑w∈F aw

)2

n
≥ 1

2

by Cauchy-Schwarz.
So we see that for a random pointx, the expected region size is at least1

2, but we want12 + β.

By the remark above, if cellF (w) has at mostk sides then
∫

cellF (w) dist(y,w)2dy≥ (1+ εk) · a2
w

2π .
Let F f ⊆ F consist of the points whose regions in the Voronoi diagram ofF have fewer than 12
sides. Since the average number of sides of a region in a planar Voronoi diagram is below 6 (using
planarity of the dual graph, the Delaunay triangulation), we have|F f | ≥ 1

2n.
So we win the factor 1+ε11 in at least half of the regions and lose nothing in the other regions.

The only problem is that the regions ofF f could together occupy only a tiny fraction of the area
of Q and then this win would not reach the thresholdβ > 0 that we seek. But if they occupy, say,
less than1

4 of the total area then the average area of the remaining regions (ofF \F f ) is at least
3
2 (at most12n regions take up area at least3

4n). Then the Cauchy–Schwarz inequality used in the
calculation above becomes strict and we win a constant factor in the regions ofF \F f . 2

3 The proof with boundary effects

The torus arena conveniently removed the need to consider the boundary effects. We now prove
the same result for the square with boundary

Proposition 2 There exist constantsβ > 0 and n0 such that for every n-point set W⊂ Q, n≥ n0,
we haveE[vol(R(x,F ))]≥ 1

2 +β.
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Figure 1: At least 1/16 of the area ofC is not covered byB(w, 1
4D).

Proof: As in the proof of Proposition 1, we can rewrite the expected area as

F(F ) =
1
n

∫
Q

vol({x∈Q : y∈ R(x,F )})dy

=
1
n

∫
Q

vol(B(y,dist(y,F ))∩Q)dy

=
1
n ∑

w∈F

∫
cellF (w)

vol(B(y,dist(y,w))∩Q)dy,

whereB(x, r) is the disc of radiusr centered atx. We wish to boundF(F ) from below by1
2 +β.

Let’s choose a large constantD (the requirements onD will become apparent later). We call a
region cellF (w) long if it has diameter at leastD andshortotherwise, and we denote byF` andFs

the subsets ofF corresponding to the long and short regions, respectively.
First we consider the long regions. We note that for anyw,y∈Q,

vol(B(y,dist(y,w))∩Q)≥ 1
2 ·dist(y,w)2 (1)

(the extreme case isw andy in opposite corners ofQ).
Now letw∈F` and writeC= cellF (w). We claim that at least116 of the area ofC lies at distance

at least14D from w; in other words, vol(C\B(w, 1
4D))≥ 1

16aw (the constant can be improved). Let
p,q be a diametrical pair of points ofC, and place two copiesCp,Cq of C/4 insideC so that
they share a common tangent toC at p andq, respectively, whereC/4 is the shape resulting from
shrinkingC by a factor of 4. Clearly, the distance betweenCp andCq is D/2, and consequently,
eitherCp or Cq do not intersectB = B(w, 1

4D). Thus, the area ofC not covered byS is at least
vol(Cp) = vol(Cq) = vol(C)/16. See Fig. 1.

It follows that
∫

cellF (w) vol(B(y,dist(y,w))∩Q)dy≥ 1
2 ·

D2

16 ·
1
16aw > D2

2000aw for everyw ∈ F`,

and so the contribution of the long regions toF(F ) is at least D2

2000nA`, whereA` = ∑w∈F`
aw.

Next, we consider the short regions (of diameter≤ D), and among those only theinner ones,
whose distance to the boundary ofQ is at leastD. Let Fsi be the corresponding subset ofF . We
haveAsi = ∑w∈Fsi

aw ≥ n−8D
√

n−A`. For the short inner regions, the discB(y,dist(y,w)) lies
completely insideQ and so their contribution toF(F ) behaves as in the proof of Proposition 1; it
equals

π
n ∑

w∈Fsi

∫
cellF (w)

dist(y,w)2dy.

As we saw above, this quantity is bounded below by

1
2n ∑

w∈Fsi

a2
w ≥

1
2n

A2
si

|Fsi|
.
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Now we distinguish several cases depending on the orders of magnitude ofA` and |Fsi|. First
suppose thatA` ≥ n

2D ; then the contribution ofA` alone suffices:F(F )≥ D2

2000nA` ≥ D
4000 > 1

2 +β
for D large enough. Next, letA` < n

2D , which for largen impliesAsi ≥ (1− 1
D)n. Now two cases

are distinguished according to|Fsi|. For |Fsi| ≤ (1− 4
D)n, we obtain

F(F )≥ 1
2n

A2
si

|Fsi|
≥

(1− 1
D)2

2(1− 4
D)

≥ 1
2

+
1
D

which is the desired bound.
Finally it remains to deal with the caseAsi ≥ (1− 1

D)n and|Fsi| ≥ (1− 4
D)n. If D is very large,

we are essentially in the situation analyzed in the proof of Proposition 1 and practically the same
argument shows thatF(F )≥ 1

2 +β in this case as well (using the fact that1
D is much smaller than

ε11). 2

4 The main result

A key ingredient in the proof of our main theorem is the following lemma, showing that ifSCN D
throws inδn points at random, instead of one as in Proposition 2, then his expected area gain still
exceeds12δn at least by a fixed fraction, provided thatδ > 0 is sufficiently small.

Lemma 3 There exist constantsβ1 > 0, δ > 0, and n0 such that for every n-point setF ⊂ Q,
n≥ n0, if S ⊂ Q is obtained byδn independent random draws from the uniform distribution on Q
thenE[vol(R(S ,F ))]≥ (1

2 +β1)δn.
Moreover, for every given sufficiently large constant D, the constantsδ and n0 above can be

adjusted so that whenever the total area A` of the long regions (of diameter at least D) exceedsn
2D

thenE[vol(R(S ,F ))]≥ 2δn.

Proof:(Sketch) This is very similar to the proof of Proposition 2. Intuitively, for smallδ, theδn
independent random points are likely to interact very little and their expected area gain is likely to
be nearly(δ−O(δ2))n times the expected area gain of a single point.

This time we have

E[vol(R(S ,F ))] =
∫

Q
Prob[y∈ R(S ,F )] dy.

HereP(y) = Prob[y∈ R(S ,F )] is the probability with respect to the random choice of the setS .
Namely,

P(y) = Prob[S ∩B(y,dist(y,F )) 6= /0]

= 1− (Prob[x 6∈ B(y,dist(y,F ))])δn

= 1−
(
1− 1

n ·vol(B(y,dist(y,F ))∩Q)
)δn

.

Let’s write ρ(y) = 1
n · vol(B(y,dist(y,F ))∩Q). If y lies in a short region of the Voronoi diagram

of F thenρ(y) ≤ CD
n with CD depending onD only, andδCD can be made as small as desired by

choosingδ sufficiently small. Then we obtainP(y) = 1− (1−ρ(y))δn≥ δnρ(y)+O((δnρ(y))2)≥
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Figure 2: Two points ofSCN D can take over almost a complete cell ofF R ST .

δnρ(y) · (1− γ) with γ a small constant. Thus, the contribution of a short Voronoi region to
E[vol(R(S ,F ))] is at least(1− γ)δn times the contribution of that region to the expected area
gained by a single random point as in Proposition 2. All the calculations involving short regions
can be done in exactly the same way. It remains to show that if the total areaA` of the long regions
is at least n

2D then these regions contribute at least 2δn to E[vol(R(S ,F ))].
In the proof of Proposition 2, Eq. (1), we have shownρ(y) ≥ 1

2n ·dist(y,w)2 for y∈ cellF (w).
We also know that dist(y,w)≥ 1

4D for y in at least 1
16 of the area of each long region. For thesey,

we haveP(y)≥ 1−e−ρ(y)δn ≥ 1−e−D2δ/200≥ D2δ
400 (assumingδ < D−2). The whole integral over

all the long regions is then at least1
16A` ≥ n

32D times this quantity and therefore larger than 2δn
with ample room to spare. 2

We can now prove our main theorem.

Theorem 4 There exist constantsα > 0 and n0 such that for every n≥ n0, SC N D can always
win at least12 +α in the Voronoi game. That is, for every n-point setF ⊂Q there exists an n-point
setS ⊂Q\F with vol(R(S ,F ))≥ (1

2 +α)vol(Q).

Proof: Let w∈ F . A takeoverof w’s region means thatSCN D places two of his points very
close tow with w as the center of symmetry. See Fig. 2. In this way, he captures almost all of
cellF (w). This suggests the following strategy forSCN D: A takeover of the1

2n largestF R ST
regions guaranteesSCN D a payoff arbitrarily close to12n. This does not prove the theorem, in
general, but it fails to do so only if almost all ofF R ST ’s regions have almost the same area. Thus,
if more thanεn F R ST regions have area below 1− ε, for some constantε > 0, then the takeover
strategy implies the theorem. It therefore suffices to describe a strategy forSCN D when all but
εn of F R ST ’s regions have area at least 1− ε. (A similar trick would also simplify the proof of
Proposition 2 if we didn’t want to prove the claim about a random point but only the existence of
a point capturing at least12 +β.) .

First SCN D chooses a setS0 of δn points as in Lemma 3; that is, with vol(R(S0,F )) ≥
(1+β1)δn and even with vol(R(S0,F ))≥ 2δn if A` ≥ n

2D .
If A` ≥ n

2D thenF R ST now hasn regions of total areaAF ≤ (1−2δ)n andSCN D still has
(1−δ)n points to play. He takes over the12(1−δ)n largest among the current regions ofF R ST .
In this way,SCN D has captured at least area arbitrarily close to

n−AF + 1
2(1−δ)n· AF

n
= n− 1

2(1+δ)AF > 1
2(1+δ)n.

Next, we suppose thatA` < n
2D . Let’s consider a pointw∈ Fs defining a short region and call

w contaminatedif SCN D has captured some point of cellF (w) by the setS0. A short region can

6



only be contaminated by a pointb∈ S0 if dist(b,w)≤ 2D. Therefore, the total area of contaminated
short regions isO(D2δn) < n

3, say, and so regions of total area at leastn
2 remain uncontaminated.

Now we use the assumption that all butεn of F R ST ’s regions have area at least 1− ε. SCN D
can now overtake the12(1− δ)n largest uncontaminated regions. This implies that the number of
uncontaminated regions of size≥ 1−ε is at leastn/2−εn. Thus,SC N D can now occupy at least
min(n/2− εn,(1−δ)n/2)≥ 1

2 (1−δ)n− εn cells, to gain total area at least

(1
2 +β1)δn+

(1
2 (1−δ)n− εn

)
(1− ε) = (1

2 +β1)δn+ 1
2(1−δ−2ε)(1− ε)n.

If ε is very small compared toδ andβ1 then this is at least(1
2 + α)n with α close toβ1δ. This

concludes the proof of the theorem. 2

5 The higher-dimensional case

The proof of Proposition 1 (and therefore of Lemma 3) exploited the fact that the Voronoi diagram
is a planar graph, and therefore at least half of all Voronoi cells have at most 11 edges. This is
not true in dimensions higher than two. We used this fact to argue that Voronoi cells cannot be
arbitrarily similar to a disc. To extend our theorem to higher dimensions, we need to give a more
general proof of this claim.

Definition 5 A convex bodyC with a point p is aµ-ball, for µ > 0, if there exists a radiusr > 0
such thatB(p, r)⊆C⊆ B(p, r(1+µ)).

Lemma 6 If C is a convex body inIRd with center p which is not a µ-ball, then∫
C

cddist(y, p)ddy≥ (1+β)L where L=
∫

D
cddist(y, p)ddy=

vol(C)2

2
,

where D is a ball of the same volume as C centered at p,β > 0 is a constant that depends only on
µ and d, and cd is the volume of the unit ball inIRd.

Proof: Let D = B(p,R), whereR= (vol(C)/cd)1/d. Then,

L =
∫

D
cddist(y, p)ddy=

∫ R

r=0

(
(cdrd) · (cddrd−1)

)
dr =

c2
d

2
R2d =

vol(C)2

2
.

As for the other claim, letr ′,R′ be the largest (resp. smallest) radius so thatB(p, r ′) ⊆ C ⊆
B(p,R′). SinceC is not aµ-ball, it follows that there exists a positive constantβ1 such thatR(1+
β1) ≤ R′. In particular, this implies that there exists a constantβ2, such that vol(K) ≥ β2vol(C),
whereK = C\B(p,R(1+β1/4)). Namely,∫

C
cddist(y, p)ddy ≥

∫
D

cd ·dist(y, p)ddy+
∫

K
cd

((
R· (1+β1/4)

)d
−Rd

)
dy

≥ (1+β)
∫

D
cd ·dist(y, p)ddy= (1+β)L,

whereβ > 0 is an appropriate constant that depends only ond andµ. 2
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(a) (b)

Figure 3: (a) For aµ-ball Voronoi cellCp all neighboring sites must be in a spherical shell around
it. (b) The sites ofN(p) are densely spread in this spherical shell as there must be a site inside the
intersection∆ between the spherical shell and a cone of angular radius 4

√
µ.

Lemma 7 Let Q be a hypercube inIRd, and let P be a set of points in Q. Let V(P) denote the
decomposition of Q into convex cells by the Voronoi diagram of P restricted to Q. Then there exists
a constant µ> 0, which depends only on d, so that the total volume of the µ-ball cells in V(P) is
bounded byvol(Q)/2.

Proof: Consider a cellCp of V(P) that is aµ-ball, and letp∈ P be its center. LetB(p, r) be
the largest ball that is contained insideCp. Let N(p) be the set of points ofP whose Voronoi cells
have a common boundary withCp.

Observe that the distance of any point ofN(p) to p is at least 2r and at most 2r(1+ µ). Fur-
thermore, any angular cone of angular angle 4

√
µ emanating fromp must include a point ofN(p).

Indeed, consider such a coneZ with a rayρ as its rotational axis and angular radius 4
√

µ, whereρ
emanates fromp. Let sdenote the intersection ofρ with the spherical shellB(p, r(1+µ))\B(p, r).
Since one endpoint ofs is outsideCp, and the other is insideCp, it follows that there must be a
point q∈ P, so that the bisector ofp andq intersectss. It is now straightforward to verify thatq is
insideZ. See Figure 3.

This implies thatN(p) is dense. Indeed, consider a pointq∈N(p). Its nearest point inN(p) is
at distance at most 2r(1+µ) ·2·4√µ= O(r

√
µ). On the other hand, the Voronoi cellCq of q has a

point on its boundary of distance≥ r from q (as it shares a boundary pointu with Cp, dist(u, p)≥ r,
and dist(u,q) = dist(u, p)). (This also implies thatCp is not adjacent to the boundary ofQ.)

That is,Cq is not aγ-ball, whereγ = Ω(r/r
√

µ− 1) = Ω(1/
√

µ). Thus, by makingµ small
enough, we can ensure thatCq is not aµ-ball.

We have shown that everyµ-ball cell in V(P) is surrounded by cells that are notµ-balls. We
will charge the volume of such aµ-ball to its surrounding cells as follows. For a pointp ∈ P
whose Voronoi cell is aµ-ball, let rp be the radius of the largest ball contained insideCp centered
at p, and letUp = B(p,1.8rp) be theregion of influenceof p. Clearly,Up∩P = {p}, vol(Up) ≥
(1.8/(1+ µ))dvol(Cp) ≥ 2vol(Cp), for µ small enough. By pickingµ small enough, we can also
guarantee that the regions of influence of theµ-balls ofV(P) are disjoint. We charge the volume

8



of aµ-ball to its region of influence, establishing the claim. 2

Plugging Lemmas 6 and 7 into the proof of Theorem 4 gives us the following result. The details
of the adaption are straightforward and omitted.

Theorem 8 There exist constantsα > 0 and n0 depending only on the dimension d, such that for
every n≥ n0, SCN D can always win at least12 +α in the Voronoi game with a hypercube playing
arena Q inIRd. That is, for every n-point setF ⊂ Q there exists an n-point setS ⊂ Q\F with
vol(R(S ,F ))≥ (1

2 +α)vol(Q).

6 Conclusions and open problems

We considered the Voronoi game on a square or hypercube boardQ, played in a single round:
F R ST starts by placingn pointsF in Q, thenSCN D places anothern pointsS disjoint fromF ,
and finally the winner is determined.

Our considerations appear to generalize without much change to sufficiently “fat” convex play-
ing arenas in the plane. On the other hand, when the playing arena degenerates to a line seg-
ment, we have reached the one-dimensional case whereF R ST , notSCN D, has a winning strat-
egy [ACC+01]. It would be interesting to understand the behavior of the game with a rectangular
playing arena as a function of the aspect ratio of the rectangle.

What happens when the number of points played byF R ST andSCN D are not identical?
Specifically, letλ be a real number between 0 and 2. Consider the game whereF R ST playsn
points andSCN D playsλn points. Let f (λ,n) be the payoff toSC N D in this Voronoi game. It
is not hard to show thatf (0,n) = 0 and that limn→∞ f (2,n) = 1. We know thatf (λ,n) > (1

2 + ε)λ
for some positiveε andn large enough, as long asλ is bounded away from 0 and 2. It would be
interesting to get a better idea of the behavior off . Does limn→∞ f (λ,n) exist for allλ?

We have shown that for any set ofn F R ST points, there is aSCN D point that grabs a
“large” Voronoi cell. It would be interesting to find configurations of theF R ST points for which
noSCN D point can do too well. Obvious candidates are grid arrangements of theF R ST points,
such as the square grid or hexagonal grid.

The original version of the Voronoi game [ACC+01] is played in more than one round:F R ST
and SCN D alternate placing points on the boardQ. The value of this game and the optimal
strategies are still unknown for dimension higher than one. It is easy to verify that if the given
boardQ is symmetric, but has no center of symmetry, thenSCN D ’s payoff is at least12. This
can be guaranteed by responding to each move ofF R ST with a point placed in the symmetric
location. Many obvious questions remain open: CanSC N D actually win the game for largen?
What happens with asymmetric boards?
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