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Abstract

In the one-round Voronoi game, thHeR ST player places sites inside a unit-square.
Next, theSCA D player places points insideQ. The payoff for a player is the total area of
the Voronoi region of) under their control. In this paper, we show that &\ D player can
always place the points in such a way that it contrgl2 £ a fraction of the total area d®,
wherea > 0 is a constant independentrof

1 Introduction

Competitive facility locatiostudies the placement of sites by competing market players.Overviews
of different models are the surveys by Friesz etlal. [TEM89], Eiselt and Laporte [EL89] and Eiselt
et al. [ELT93].

TheVoronoi gamas a simple geometric model for competitive facility location, where assite
“owns” that part of the playing arena that is closestihian to any other site. We consider a two-
player version with a square areQa The two playersF R.5S7 andSCN D, place points intd.

The goal of both players is to capture as much of the ar€aad possible, where the region cap-
tured byF R ST isR(F,S) = {xe Q: dist(x, ¥) < dist(x,.5)} and the region captured CAN D
iSR(S, F). Here ¥ is the set of points off R ST, S is the set of points af CAD, dist(-,-) is the
Euclidean distance and \(o] is the Lebesgue measure. In other words, if we construct the Voronoi
diagram [Aur91] of ¥ U S, then each player captures the Voronoi regions (restrict€p) t@f his
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point set and is rewarded proportionate to the measure of his captured seayiffor ¥ R ST

is Vol(R(F,.5))/vol(Q) and the payoff fots CALD is vol(R(S, F))/vol(Q). (Of course, we can
re-scale the boar@ so that vo[Q) = 1, but in the subsequent considerations a different scaling
seems more intuitive.)

Ahn et al. [ACC"01] had studied a one-dimensional Voronoi game, where the &éna line
segment, and the game takesounds. In each roundt R ST andSCN D place one point each.

Ahn et al. showed tha§ CA'D then has a winning strategy that guarantees a payoff Bftl,

with € > 0, but that¥ R ST can forcee to be as small as he wishes. On the other hand, if only a
single round is played, wherg R ST first placesn points, followed byS CA D placingn points,
then ¥ R. ST has a winning strategy. In fact, @ = [0,2n] and # R ST plays on the odd integer
points{1,3,5,...,2n— 1}, thenSCN D’'s payoff is less than 2. So there is a set of “key points”

in the one-dimensional arena, whose possession guarantees winning the game.

In this paper we show that no such set of “key points” exists in the two-dimensional case. More
strongly, for each sef of n points, there is a set of n SCA D points such thas CAD’s payoff
is at least 12+ a, for an absolute constaat> 0 andn large enough.

From now on, lefQ be the squar¢0, \/n?, of arean, so that the average area gER.ST’s
pointis 1. To win the game§ CA_D needs to findh points such that their average area is at least
1/2+a. We first show that it is very easy to firmhesuch point—in fact, aandompoint inQ\ ¥
has this property. Since this is the key idea of our proof, we first present it in a modified setting
where the aren@® has the topology of a torus, eliminating boundary effects. We then proceed to
prove this result for the square with its standard topology, showing how we can handle the square
boundary, and proceed to prove the resultfaf CAD points. Finally, we show that the result
generalizes to higher dimensions as well.

2 The torus case

To present the (simple) main idea of our proofs in a setting free of technical complications due to
effects near the boundary @, we assume in this section that the squ@reas the topology of a
torus. To be precise, we identify the left and right edge®,adis well as the top and bottom edges,
while retaining the normal Euclidean metric@

Proposition 1 There exist constanf> 0 and my such that for every n-point sét in the square
arena Q with torus topology, i ng, there is a point x Q\ F with vol(R(x, F)) > %+ B. In fact,

x can be selected uniformly at randor{vol(R(x, ¥ ))] > 3 + B, whereE[-] denotes expectation
with respect to uniform random selection of Q.

Proof: If there is a pointp € Q such that digtp, ¥) > /n/4, the proposition holds: With
constant probability the poimxtwill grab a constant fraction of. If nis large enougﬂ,this is more
than, say, 1. In the following we can therefore assume that no suchpeiists.

Let |5 denote the characteristic function of a set

EVOIROCF))] = oy - [ ()

1This is the only restriction on in this proof. When we start to take boundary effects into account, we will have
to assume to be larger by several orders of magnitude.
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_ % /Q vol({xe Q: ye R(x, F)})dy

by Fubini’s theorem.

A pointy € Q lies inR(x, F) if and only if disty,x) < r = dist(y, ), and so the sefx € Q:
yeR(X F)} ={xeQ:dist(x,y) <r}. Sincer <./n/4, this is a disc of radius centered ay
(possibly wrapping around the edge)f

Our integral becomeﬁdeist(y,f)zdy, a quantity that we denote (). We split it into

integrals overf's Voronoi cells: Fo(F) = 85 wes fce"ﬂw)dist(y,w)zdy, where cell-(w) is the
region ofw in the Voronoi diagram off restricted taQ.

Among all convex bodie€ c R? of areaa, the integralfcdist(y,w)zdy is minimized by the
discCy of areaa centered atv (somewhat informally, moving a piece Gfcloser tow decreases the
integral, and such a move is possible for &lut that disc). Moreover, for later use we note that
if Cis a convexk-gon then| dist(y,w)?dy > (14 &) Jo, dist(y, w)? dy with a suitable smaky > 0.

The value of that integral over such a disc is

\/a/T[ a2
i 2 —= 2 . — —_—
/Codlst(y,w) dy = /o re.2mrdr o

Let’s use the notation, = vol(cell¢ (w)). Then,

(Zwegf aw) i

n

>

NI

1 1
Fo(F) = 2 / disty,w)2dy> — 3 a2 > —
o(F) ng coll (w) (y,w)“dy > angfaw_ o

by Cauchy-Schwarz.
So we see that for a random poitthe expected region size is at Ieésbut we want% +B.

By the remark above, if cell(w) has at mosk sides thenfce"ﬂw) dist(y,w)?dy > (1+ &) - 2*—12@[
Let 7+ C ¥ consist of the points whose regions in the Voronoi diagrarn dfave fewer than 12
sides. Since the average number of sides of a region in a planar Voronoi diagram is below 6 (using
planarity of the dual graph, the Delaunay triangulation), we hgye> %n.

So we win the factor %-€11 in at least half of the regions and lose nothing in the other regions.
The only problem is that the regions @t could together occupy only a tiny fraction of the area
of Q and then this win would not reach the threshpld 0 that we seek. But if they occupy, say,
less than}1 of the total area then the average area of the remaining regiors \(df;) is at least
% (at most%n regions take up area at Ie%”l). Then the Cauchy—Schwarz inequality used in the
calculation above becomes strict and we win a constant factor in the regign$ % . O

3 The proof with boundary effects

The torus arena conveniently removed the need to consider the boundary effects. We now prove
the same result for the square with boundary

Proposition 2 There exist constan{s> 0 and iy such that for every n-point set W Q, n> no,
we haveE[vol(R(x, F))] > 3 +B.



Figure 1: At least 116 of the area of is not covered bB(w, %D).

Proof: As in the proof of Proposition|1, we can rewrite the expected area as
1
F(F) = ﬁ/Qvo|({xe Q:yeR(x F)})dy

_ % /Q vol(B(y, dist(y, )) Q) dy

1

= 02 oy BRSO 1 Q

whereB(x,r) is the disc of radius centered ax. We wish to boundr (¥ ) from below by% +B.
Let's choose a large constadt(the requirements oD will become apparent later). We call a
region cellr (w) longif it has diameter at lea§ andshortotherwise, and we denote By and 7
the subsets of corresponding to the long and short regions, respectively.
First we consider the long regions. We note that forany< Q,

vol(B(y, dist(y,w)) N Q) > 3 - dist(y,w)? (1)

(the extreme case 18 andy in opposite corners d).

Now letw € #; and writeC = cell# (w). We claim that at leask; of the area o€ lies at distance
at Ieast}lD from w; in other words, vdC \ B(w, %D)) > 1—16aW (the constant can be improved). Let
p,d be a diametrical pair of points &, and place two copie§,,Cq of C/4 insideC so that
they share a common tangentGat p andq, respectively, wher€/4 is the shape resulting from
shrinkingC by a factor of 4. Clearly, the distance betweé@nandCq is D/2, and consequently,
eitherCp, or Cq do not intersecB = B(w, D). Thus, the area o€ not covered bys is at least
vol(Cp) = vol(Cq) = vol(C)/16. See Fid. 1. ]

1.D%2 1

It follows that [oy,, () VOI(B(Y, dist(y,w)) NQ)dy > 5 - T5 - 753w > %goaw for everyw € 7,

and so the contribution of the long regionsR¢o¥ ) is at |eaS%Ag, whereA; = 3 e 7, aw.

Next, we consider the short regions (of diameteD), and among those only thener ones,
whose distance to the boundary@fis at leasD. Let 75 be the corresponding subsetsf We
haveAsi = S we g, aw > N—8Dy/n—A,. For the short inner regions, the diB¢y, dist(y,w)) lies
completely insideQ and so their contribution t6 (7 ) behaves as in the proof of Proposit|dn 1; it

equals
T

— dist(y, w)?dy.
n Wezfsi /ceuf (w) (

As we saw above, this quantity is bounded below by

1 oo 1A
— > A
2nW€zfsia""_ 2n | Fsil
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Now we distinguish several cases depending on the orders of magnituleaold | 7j|. First
suppose that, > L; then the contribution of, alone sufficesF () > ;2 -A, > 2> 14
for D large enough. Next, le&, < 5%, which for largen implies As; > (1— %)n. Now two cases
are distinguished according {@si|. For|%si| < (1— é)n, we obtain

1A (-5
F(F)= 2n | ¥sil = 2(1-3) =

1
D

NI =

which is the desired bound.

Finally it remains to deal with the cagg; > (1— %)n and|%si| > (1— %)n. If D is very large,
we are essentially in the situation analyzed in the proof of Proposition 1 and practically the same
argument shows th&t(F) > % + B in this case as well (using the fact t@is much smaller than

811). O

4 The main result

A key ingredient in the proof of our main theorem is the following lemma, showing tisat#& D
throws indn points at random, instead of one as in Proposition 2, then his expected area gain still
exceede‘%én at least by a fixed fraction, provided that- O is sufficiently small.

Lemma 3 There exist constanf®; > 0, & > 0, and ry such that for every n-point sef C Q,
n > np, if § C Q is obtained byn independent random draws from the uniform distribution on Q
thenE[vol(R(S, F))] > (5 + B1)dn.

Moreover, for every given sufficiently large constant D, the constaatsd iy above can be
adjusted so that whenever the total areachthe long regions (of diameter at least D) excegkls
thenE[vol(R(S, F))] > 20n.

Proof:(Sketch) This is very similar to the proof of Propositfdn 2. Intuitively, for stdathedn
independent random points are likely to interact very little and their expected area gain is likely to
be nearly(d — O(&%))n times the expected area gain of a single point.

This time we have

EVOI(R(S, F))] = /Q Probly € R(S, )] dy.

HereP(y) = Probly € R(S, )] is the probability with respect to the random choice of thesset
Namely,
P(y) = Prob[SnB(y,disty, ¥)) # 0]
= 1 (Probx ¢ B(y,dist(y, #))])™"
= 1—(1—L.vol(B(y,distly, 7)) N Q))*".

Let's write p(y) = rl]-vol(B(y,dist(y,ff)) NQ). If ylies in a short region of the Voronoi diagram
of ¥ thenp(y) < CTD with Cp depending oD only, anddCp can be made as small as desired by

choosingd sufficiently small. Then we obtaiR(y) = 1— (1—p(y))2" > dnp(y) + O((dnp(y))?) >
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Figure 2: Two points of CAD can take over almost a complete cellpfR ST .

onp(y) - (1 —y) with y a small constant. Thus, the contribution of a short Voronoi region to
E[vol(R(S, F))] is at least(1 — y)dn times the contribution of that region to the expected area
gained by a single random point as in Proposifipn 2. All the calculations involving short regions
can be done in exactly the same way. It remains to show that if the totahacédhe long regions
is at leastl}; then these regions contribute at leat 2 E[vol(R(S, F))].

In the proof of Proposmomz EqD(l) we have shop(y) > . - dist(y,w)? for y € celly (w).
We also know that digy,w) > 3D for yin at Ieast 5 of the area of each long region. For thgse

we haveP(y) > 1— e PY)dn > 1 e Dz5/200> D 3 (assumlngS < D~?). The whole integral over

all the long regions is then at Iea%éA,g > =5 tlmes this quantity and therefore larger than?2

with ample room to spare. a
We can now prove our main theorem.

Theorem 4 There exist constants > 0 and rp such that for every & ng, SCA'D can always
win at Ieast% +a in the Voronoi game. That is, for every n-point getC Q there exists an n-point

sets C Q\ F with vol(R(S, F)) > (3 +a)vol(Q).

Proof: Letw € F. A takeoverof w's region means thag CA_D places two of his points very
close tow with w as the center of symmetry. See Hi@. 2. In this way, he captures almost all of
cellz (w). This suggests the following strategy 8CA D: A takeover of the%n largestF R ST
regions guaranteesCA D a payoff arbitrarily close tc%n. This does not prove the theorem, in
general, but it fails to do so only if almost all TR S7’s regions have almost the same area. Thus,
if more thanen ¥ R ST regions have area below-1g, for some constarg > 0, then the takeover
strategy implies the theorem. It therefore suffices to describe a strategy"#§rD when all but
enof F R ST’s regions have area at least-E. (A similar trick would also simplify the proof of
Propositior] 2 if we didn’t want to prove the claim about a random point but only the existence of
a point capturing at Iea%tJr B.) .

First SCA'D chooses a sefp of dn points as in Lemm@B that is, with (&(So, 7)) >
(14+B1)0n and even with vaR(So, F)) > 20nif Ay >

If A, > 55 then F R ST now hasn regions of total area\f (1—28)n andSCA D still has
(1—-9)n pomts to play. He takes over t@l d)n largest among the current regions®R 57 .

In this way, S CN D has captured at least area arbitrarily close to

A
n_AT_’_%(l_é)n.Tf: —%(1+6)Ag:> 5(149)n.

Next, we suppose th#\, < 51;. Let’s consider a poinv € ¥s defining a short region and call
w contaminatedf SCAD has captured some point of ce{w) by the setSy. A short region can
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only be contaminated by a poibt S if dist(b,w) < 2D. Therefore, the total area of contaminated
short regions i€(D?dn) < 3, say, and so regions of total area at léasémain uncontaminated.
Now we use the assumption that all lautof F R .S7’s regions have area at leastk. SCN D

can now overtake thé(l— d)n largest uncontaminated regions. This implies that the number of
uncontaminated regions of sizel — ¢ is at leash/2 —en. Thus,SCA D can now occupy at least
min(n/2—en,(1-9)n/2) > % (1—&)n—en cells, to gain total area at least

(E+Bydn+ (3 (1-3)n—en) (1—¢) = (3 +B1)dn+3(1—-3—2¢)(1—¢)n.

If € is very small compared td and3; then this is at Ieas(t% + a)n with a close tof318. This
concludes the proof of the theorem. O

5 The higher-dimensional case

The proof of Propositiop|1 (and therefore of Lemima 3) exploited the fact that the Voronoi diagram

is a planar graph, and therefore at least half of all Voronoi cells have at most 11 edges. This is
not true in dimensions higher than two. We used this fact to argue that Voronoi cells cannot be
arbitrarily similar to a disc. To extend our theorem to higher dimensions, we need to give a more
general proof of this claim.

Definition 5 A convex bodyC with a pointp is ap-ball, for p> 0, if there exists a radius> 0
such thaB(p,r) CC C B(p,r(1+y)).

Lemma 6 If C is a convex body ilR? with center p which is not a p-ball, then

vol(C)?
2 Y

/cddist(y, p)ddy> (1+B)L where L:/cddist(y, p)ddy =
c D

where D is a ball of the same volume as C centered §tp,0 is a constant that depends only on
tand d, and gis the volume of the unit ball ifRY.
Proof: Let D = B(p,R), whereR= (vol(C)/cq)Y/9. Then,

L~ [ cadisty. p)dy— / ) (cqdrt- 1))dr_CdR2d voI(ZC)_

As for the other claim, let’,R be the largest (resp. smallest) radius so &g, r’) C C C
B(p,R). SinceC is not ap-ball, it follows that there exists a positive const@atsuch thaR(1+
B1) <R. In particular, this implies that there exists a consf@ntsuch that vdlK) > ,vol(C),
whereK = C\ B(p,R(1+B1/4)). Namely,

- d )¢ ¢
/C cqdist(y, p)°dy > / Ca - distly, p)"dy+ / 1+Bl/4)) —R")dy
> (1+B) [ co-disty, pdy= (1+BL.
wheref3 > 0 is an appropriate constant that depends onlg andp. O
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() (b)

Figure 3: (a) For aw-ball Voronoi cellCy, all neighboring sites must be in a spherical shell around
it. (b) The sites oN(p) are densely spread in this spherical shell as there must be a site inside the
intersection between the spherical shell and a cone of angular radjs 4

Lemma 7 Let Q be a hypercube ilRY, and let P be a set of points in Q. Le{(R) denote the
decomposition of Q into convex cells by the Voronoi diagram of P restricted to Q. Then there exists
a constant p> 0, which depends only on d, so that the total volume of the p-ball cell§i) ¥
bounded byol(Q)/2.

Proof: Consider a celCp, of V(P) that is ap-ball, and letp € P be its center. LeB(p,r) be
the largest ball that is contained insi@g. Let N(p) be the set of points d? whose Voronoi cells
have a common boundary wi@}.

Observe that the distance of any point\fp) to p is at least 2 and at most 21+ ). Fur-
thermore, any angular cone of angular anglgi4emanating fronp must include a point afi(p).
Indeed, consider such a codavith a rayp as its rotational axis and angular radiugi# wherep
emanates fronp. Letsdenote the intersection pfwith the spherical sheB(p,r(1+))\ B(p,r).
Since one endpoint cf is outsideCp, and the other is insid€, it follows that there must be a
pointq € P, so that the bisector g andq intersectss. It is now straightforward to verify thaj is
insideZ. See Figurg]3.

This implies thalN(p) is dense. Indeed, consider a pajrg N(p). Its nearest point ilN(p) is
at distance at mostr21+-y) - 2-4, /= O(r,/fi). On the other hand, the Voronoi c&y of g has a
point on its boundary of distancer from g (as it shares a boundary poinwith Cy, dist(u, p) >,
and distu,q) = dist(u, p)). (This also implies that, is not adjacent to the boundary Qf)

That is,Cq is not ay-ball, wherey = Q(r/r,/fi— 1) = Q(1/,/f). Thus, by makingt small
enough, we can ensure ti@{is not ap-ball.

We have shown that evepyball cell inV(P) is surrounded by cells that are neballs. We
will charge the volume of such gball to its surrounding cells as follows. For a popt P
whose Voronoi cell is a-ball, letrp be the radius of the largest ball contained insiglecentered
at p, and letU, = B(p, 1.8rp) be theregion of influencef p. Clearly,U,NP = {p}, vol(Up) >
(1.8/(1+ w))%vol(Cp) > 2vol(Cp), for p small enough. By pickingt small enough, we can also
guarantee that the regions of influence of tHealls ofV (P) are disjoint. We charge the volume



of ap-ball to its region of influence, establishing the claim. a
Plugging Lemmais|6 arid 7 into the proof of Theofém 4 gives us the following result. The details
of the adaption are straightforward and omitted.

Theorem 8 There exist constants > 0 and rp depending only on the dimension d, such that for
every n> ng, SCAN D can always win at Iea$}+ a in the Voronoi game with a hypercube playing
arena Q inlRY. That is, for every n-point sef C Q there exists an n-point sgtc Q\ ¥ with
VOI(R(S, 7)) > (5 +a)vol(Q).

6 Conclusions and open problems

We considered the Voronoi game on a square or hypercube )aothyed in a single round:
FRST starts by placing points 7 in Q, thenS CA_D places anothat pointsS disjoint from 7,
and finally the winner is determined.

Our considerations appear to generalize without much change to sufficiently “fat” convex play-
ing arenas in the plane. On the other hand, when the playing arena degenerates to a line seg-
ment, we have reached the one-dimensional case Wwh&ré7, not.SCA D, has a winning strat-
egy [ACCT01]. It would be interesting to understand the behavior of the game with a rectangular
playing arena as a function of the aspect ratio of the rectangle.

What happens when the number of points playedfi® . S7 and SCA D are not identical?
Specifically, letA be a real number between 0 and 2. Consider the game Wh&&7 playsn
points andS CA_D playsAn points. Letf (A, n) be the payoff tasCA’D in this Voronoi game. It
is not hard to show thatt(0,n) = 0 and that lin_. f(2,n) = 1. We know thatf (A,n) > (3 +&)A
for some positivee andn large enough, as long asis bounded away from 0 and 2. It would be
interesting to get a better idea of the behaviof oDoes limy_. f(A,n) exist for allA?

We have shown that for any set of # R .$7 points, there is &SCA D point that grabs a
“large” Voronoi cell. 1t would be interesting to find configurations of th&) §‘7 points for which
no SCAN D point can do too well. Obvious candidates are grid arrangements gfthe7 points,
such as the square grid or hexagonal grid.

The original version of the Voronoi game [ACO1] is played in more than one round:R ST
and SCA(D alternate placing points on the boa@ The value of this game and the optimal
strategies are still unknown for dimension higher than one. It is easy to verify that if the given
boardQ is symmetric, but has no center of symmetry, tiseP\(D’s payoff is at Ieas%. This
can be guaranteed by responding to each mov& ®{S7 with a point placed in the symmetric
location. Many obvious questions remain open: Q& D actually win the game for large?

What happens with asymmetric boards?
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