13.1. Network Flow

We would like to transfer as much “merchandise” as possible from one point to another. For example, we have a wireless network, and one would like to transfer a large file from s to t. The network have limited capacity, and one would like to compute the maximum amount of information one can transfer.

Specifically, there is a network and capacities associated with each connection in the network. The question is how much “flow” can you transfer from a source s into a sink t. Note, that here we think about the flow as being splitable, so that it can travel from the source to the sink along several parallel paths simultaneously. So, think about our network as being a network of pipe moving water from the source the sink (the capacities are how much water can a pipe transfer in a given unit of time). On the other hand, in the internet traffic is packet based and splitting is less easy to do.

Definition 13.1.1. Let $G = (V,E)$ be a directed graph. For every edge $(u,v) \in E(G)$ we have an associated edge capacity $c(u,v)$, which is a non-negative number. If the edge $(u,v) \notin G$ then $c(u,v) = 0$. In addition, there is a source vertex s and a target sink vertex t.

The entities G, s, t and $c(\cdot \cdot)$ together form a flow network or simply a network. An example of such a flow network is depicted in Figure 13.1.

13.1.2 (flow). A flow in a network is a function $f(\cdot \cdot)$ on the edges of G such that:

(A) Bounded by capacity: For any edge $(u,v) \in E$, we have $f(u,v) \leq c(u,v)$.

Specifically, the amount of flow between u and v on the edge (u,v) never exceeds its capacity $c(u,v)$.
Claim 13.2.3.

(B) **Anti symmetry:** For any \(u,v \) we have \(f(u,v) = -f(v,u) \).

(C) There are two special vertices: (i) the **source** vertex \(s \) (all flow starts from the source), and the **sink** vertex \(t \) (all the flow ends in the sink).

(D) **Conservation of flow:** For any vertex \(u \in V \setminus \{s,t\} \), we have \(\sum_{v} f(u,v) = 0 \).\(^2\) Namely, for any internal node, all the flow that flows into a vertex leaves this vertex.

The amount of flow (or simply **flow**) of \(f \), called the **value** of \(f \), is \(|f| = \sum_{v \in V} f(s,v) \).

Note, that a flow on an edge can be negative (i.e., there is a positive flow flowing on this edge in the other direction).

Problem 13.1.3 (Maximum flow). Given a network \(G \) find the **maximum flow** in \(G \). Namely, compute a legal flow \(f \) such that \(|f| \) is maximized.

13.2. Some properties of flows and residual networks

For two sets \(X,Y \subseteq V \), let \(f(X,Y) = \sum_{x \in X, y \in Y} f(x,y) \). We will slightly abuse the notations and refer to \(f(\{v\}, S) \) by \(f(v,S) \), where \(v \in V(G) \).

Observation 13.2.1. By definition, we have \(|f| = f(s,V) \).

Lemma 13.2.2. For a flow \(f \), the following properties holds:

(i) \(\forall u \in V(G) \) we have \(f(u,u) = 0 \),

(ii) \(\forall X \subseteq V \) we have \(f(X,X) = 0 \),

(iii) \(\forall X,Y \subseteq V \) we have \(f(X,Y) = -f(Y,X) \),

(iv) \(\forall X,Y,Z \subseteq V \) such that \(X \cap Y = \emptyset \) we have that \(f(X \cup Y, Z) = f(X,Z) + f(Y,Z) \) and \(f(Z,X \cup Y) = f(Z,X) + f(Z,Y) \).

(v) For all \(u \in V \setminus \{s,t\} \), we have \(f(u,V) = f(V,u) = 0 \).

Proof: Property (i) holds since \((u,u) \) is not an edge in the graph, and as such its flow is zero. As for property (ii), we have

\[
\begin{align*}
 f(X,X) &= \sum_{\{u,v\} \subseteq X, u \neq v} (f(u,v) + f(v,u)) + \sum_{u \in X} f(u,u) = \sum_{\{u,v\} \subseteq X, u \neq v} (f(u,v) - f(v,u)) + \sum_{u \in X} 0 = 0,
\end{align*}
\]

by the anti-symmetry property of flow (Definition 13.1.2 (B)).

Property (iii) holds immediately by the anti-symmetry of flow, as

\[
\begin{align*}
 f(X,Y) &= \sum_{x \in X, y \in Y} f(x,y) = -\sum_{x \in X, y \in Y} f(y,x) = -f(Y,X).
\end{align*}
\]

(iv) This case follows immediately from definition.

Finally (v) is a restatement of the conservation of flow property.

Claim 13.2.3. \(|f| = f(V,t) \).

\(^2\)This law for electric circuits is known as Kirchhoff’s Current Law.
Figure 13.2: (i) A flow network, and (ii) the resulting residual network. Note, that \(f(u,w) = -f(w,u) = -1 \) and as such \(c_f(u,w) = 10 - (-1) = 11 \).

Proof: We have:

\[
|f| = f(s, V) = f(V \setminus (V \setminus \{s\}), V) \\
= f(V, V) - f(V \setminus \{s\}, V) \\
= -f(V \setminus \{s\}, V) = f(V, V \setminus \{s\}) \\
= f(V, t) + f(V, V \setminus \{s, t\}) \\
= f(V, t) + \sum_{u \in V \setminus \{s, t\}} f(V, u) \\
= f(V, t) + \sum_{u \in V \setminus \{s, t\}} 0 \\
= f(V, t),
\]

since \(f(V, V) = 0 \) by Lemma 13.2.2 (i) and \(f(V, u) = 0 \) by Lemma 13.2.2 (iv).

Definition 13.2.4. Given capacity \(c \) and flow \(f \), the **residual capacity** of an edge \((u, v)\) is

\[c_f(u, v) = c(u, v) - f(u, v). \]

Intuitively, the residual capacity \(c_f(u, v) \) on an edge \((u, v)\) is the amount of unused capacity on \((u, v)\). We can next construct a graph with all edges that are not being fully used by \(f \), and as such can serve to improve \(f \).

Definition 13.2.5. Given \(f, G = (V, E) \) and \(c \), as above, the **residual graph** (or **residual network**) of \(G \) and \(f \) is the graph \(G_f = (V, E_f) \) where

\[E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}. \]

Note, that by the definition of \(E_f \), it might be that an edge \((u, v)\) that appears in \(E \) might induce two edges in \(E_f \). Indeed, consider an edge \((u, v)\) such that \(f(u, v) < c(u, v) \) and \((v, u)\) is not an edge of \(G \). Clearly, \(c_f(u, v) = c(u, v) - f(u, v) > 0 \) and \((u, v) \in E_f \). Also,

\[c_f(v, u) = c(v, u) - f(v, u) = 0 - (-f(u, v)) = f(u, v), \]

since \(c(v, u) = 0 \) as \((v, u)\) is not an edge of \(G \). As such, \((v, u) \in E_f \). This states that we can always reduce the flow on the edge \((u, v)\) and this is interpreted as pushing flow on the edge \((v, u)\). See Figure 13.2 for an example of a residual network.

Since every edge of \(G \) induces at most two edges in \(G_f \), it follows that \(G_f \) has at most twice the number of edges of \(G \); formally, \(|E_f| \leq 2|E|\).
Lemma 13.2.6. Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof: One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of E_f. ■

The following lemma testifies that we can improve a flow f on G by finding any legal flow h in the residual network G_f.

Lemma 13.2.7. Given a flow network $G = (V,E)$, a flow f in G, and a flow h in G_f, where G_f is the residual network of f. Then $f + h$ is a (legal) flow in G and its capacity is $|f + h| = |f| + |h|$.

Proof: By definition, we have $(f + h)(u, v) = f(u, v) + h(u, v)$ and thus $(f + h)(X, Y) = f(X, Y) + h(X, Y)$. We need to verify that $f + h$ is a legal flow, by verifying the properties required to it by Definition 13.1.2.

Anti symmetry holds since $(f + h)(u, v) = f(u, v) + h(u, v) = -f(v, u) - h(v, u) = -(f + h)(v, u)$.

Next, we verify that the flow $f + h$ is bounded by capacity. Indeed,

$$(f + h)(u, v) \leq f(u, v) + h(u, v) \leq f(u, v) + c_f(u, v) = f(u, v) + (c(u, v) - f(u, v)) = c(u, v).$$

For $u \in V - s - t$ we have $(f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0$ and as such $f + h$ comply with the conservation of flow requirement.

Finally, the total flow is

$$|f + h| = (f + h)(s, V) = f(s, V) + h(s, V) = |f| + |h|.$$ ■

Definition 13.2.8. For G and a flow f, a path π in G_f between s and t is an augmenting path.

Note, that all the edges of π has positive capacity in G_f, since otherwise (by definition) they would not appear in E_f. As such, given a flow f and an augmenting path π, we can improve f by pushing a positive amount of flow along the augmenting path π.

An augmenting path is depicted on the right, for the network flow of Figure 13.2.

Definition 13.2.9. For an augmenting path π let $c_f(\pi)$ be the maximum amount of flow we can push through π. We call $c_f(\pi)$ the residual capacity of π. Formally,

$$c_f(\pi) = \min_{(u,v) \in \pi} c_f(u,v).$$
We can now define a flow that realizes the flow along \(\pi \). Indeed:

\[
f_{\pi}(u,v) = \begin{cases}
 c_f(\pi) & \text{if } (u,v) \text{ is in } \pi \\
 -c_f(\pi) & \text{if } (v,u) \text{ is in } \pi \\
 0 & \text{otherwise.}
\end{cases}
\]

Lemma 13.2.10. For an augmenting path \(\pi \), the flow \(f_{\pi} \) is a flow in \(G_f \) and \(|f_{\pi}| = c_f(\pi) > 0 \).

We can now use such a path to get a larger flow.

Lemma 13.2.11. Let \(f \) be a flow, and let \(\pi \) be an augmenting path for \(f \). Then \(f + f_{\pi} \) is a “better” flow. Namely, \(|f + f_{\pi}| = |f| + |f_{\pi}| > |f| \).

Namely, \(f + f_{\pi} \) is flow with larger value than \(f \). Consider the flow in Figure 13.4.

Can we continue improving it? Well, if you inspect the residual network of this flow, depicted on the right. Observe that \(s \) is disconnected from \(t \) in this residual network. So, we are unable to push any more flow. Namely, we found a solution which is a local maximum solution for network flow. But is that a global maximum? Is this the maximum flow we are looking for?

13.3. The Ford-Fulkerson method

Given a network \(G \) with capacity constraints \(c \), the above discussion suggest a simple and natural method to compute a maximum flow. This is known as the **Ford-Fulkerson** method for computing maximum flow, and is depicted on the left, we will refer to it as the mtdFordFulkerson method.

It is unclear that this method (and the reason we do not refer to it as an algorithm) terminates and reaches the global maximum flow. We address these problems shortly.

13.4. On maximum flows

We need several natural concepts.

Definition 13.4.1. A **directed cut** \((S,T)\) in a flow network \(G = (V,E) \) is a partition of \(V \) into \(S \) and \(T = V \setminus S \), such that \(s \in S \) and \(t \in T \). We usually will refer to a directed cut as being a **cut**.

The net **flow of** \(f \) **across** a cut \((S,T)\) is \(f(S,T) = \sum_{s \in S, t \in T} f(s,t) \).

The **capacity** of \((S,T)\) is \(c(S,T) = \sum_{s \in S, t \in T} c(s,t) \).

The **minimum cut** is the cut in \(G \) with the minimum capacity.
Lemma 13.4.2. Let G, f, s, t be as above, and let (S, T) be a cut of G. Then $f(S, T) = |f|$.

Proof: We have
\[f(S, T) = f(S, V) - f(S, S) = f(S, V) = f(s, V) + f(S - s, V) = f(s, V) = |f|, \]
since $T = V \setminus S$, and $f(S - s, V) = \sum_{u \in S - s} f(u, V) = 0$ by Lemma 13.2.2 (v) (note that u can not be t as $t \in T$).

Claim 13.4.3. The flow in a network is upper bounded by the capacity of any cut (S, T) in G.

Proof: Consider a cut (S, T). We have $|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \leq \sum_{u \in S, v \in T} c(u, v) = c(S, T)$.

In particular, the maximum flow is bounded by the capacity of the minimum cut. Surprisingly, the maximum flow is exactly the value of the minimum cut.

Theorem 13.4.4 (Max-flow min-cut theorem). If f is a flow in a flow network $G = (V, E)$ with source s and sink t, then the following conditions are equivalent:

(A) f is a maximum flow in G.

(B) The residual network G_f contains no augmenting paths.

(C) $|f| = c(S, T)$ for some cut (S, T) of G. And (S, T) is a minimum cut in G.

Proof: (A) \Rightarrow (B): By contradiction. If there was an augmenting path p then $c_f(p) > 0$, and we can generate a new flow $f + f_p$, such that $|f + f_p| = |f| + c_f(p) > |f|$. A contradiction as f is a maximum flow.

(B) \Rightarrow (C): Well, it must be that s and t are disconnected in G_f. Let
\[S = \left\{ v \bigg| \text{Exists a path between } s \text{ and } v \text{ in } G_f \right\} \]
and $T = V \setminus S$. We have that $s \in S$, $t \in T$, and for any $u \in S$ and $v \in T$ we have $f(u, v) = c(u, v)$. Indeed, if there were $u \in S$ and $v \in T$ such that $f(u, v) < c(u, v)$ then $(u, v) \in E_f$, and v would be reachable from s in G_f, contradicting the construction of T.

This implies that $|f| = f(S, T) = c(S, T)$. The cut (S, T) must be a minimum cut, because otherwise there would be cut (S', T') with smaller capacity $c(S', T') < c(S, T) = f(S, T) = |f|$, On the other hand, by Lemma 13.4.3, we have $|f| = f(S', T') \leq c(S', T')$. A contradiction.

(C) \Rightarrow (A) Well, for any cut (U, V), we know that $|f| \leq c(U, V)$. This implies that if $|f| = c(S, T)$ then the flow can not be any larger, and it is thus a maximum flow.

The above max-flow min-cut theorem implies that if mtdFordFulkerson terminates, then it had computed the maximum flow. What is still allusive is showing that the mtdFordFulkerson method always terminates. This turns out to be correct only if we are careful about the way we pick the augmenting path.

Bibliography