Chapter 36

Matchings

By Sariel Har-Peled, December 30, 2014 Version: 0.2

36.1. Definitions

Definition 36.1.1. For a graph G = (V,E) aset M C E of edges is a matching if no pair of edges of M has a
common vertex.

A matching is perfect if it covers all the vertices of G. For a weight function w, which assigns real weight to
the edges of G, a matching M is a maximal weight matching, if M is a matching and w(M) =) .,y w(e) is
maximal.

Definition 36.1.2. If there is no weight on the edges, we consider the weight of every edge to be one, and in
this case, we are trying to compute a maximum size matching.

Problem 36.1.3. Given a graph G and a weight function on the edges, compute the maximum weight matching
inG.

36.2. Unweighted matching in a bipartite graph

We remind the reader that there is a simple way to do a matching in a bipartite graph using network flow. Since
this was already covered, we will not repeat it here.

36.3. Matchings and Alternating Paths

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

Consider a matching M. An edge e € M is a matching edge. Naturally, v
Any edge ¢’ € E(G) \ M is free. In particular, a vertex v € V(G) is matched ?J/
if it is adjacent to an edge in M. Naturally, a vertex v' which is not matched
is free.

An alternating path is a simple path that its edges are alternately matched

and free. An alternating cycle is defined similarly. The length of a path/cycle ¢
is the number of edges in it.
For an alternating path/cycle r, its weight is 6/
y(r, M) = Z w(e) — Z w(e). (36.1)
eem\M eernM Figure 36.1: The edge e is in

Namely, it is the total weight of the free edges in 7 minus the weight of the the matching, while ¢’ is free.

matched edges. This is a natural concept because of the following lemma.

Lemma 36.3.1. Let M be a matching, and let & be an alternating path/cycle with positive weight such that
M=Mo&r=M\n)U(r\M)

is a matching, then w(M’) is bigger; namely, w(M") > w(M).

Proof: Just observe that w(M") = w(M) + y(r, M). [

Definition 36.3.2. An alternating path is augmenting if it starts and ends in a free vertex.

Observation 36.3.3. If M has an augmenting path r then M is not of maximum size matching (this is for the
unweighted case), since M & n is a larger matching.

Theorem 36.3.4. Let M be a matching, and T be a maximum size matching, and k = |T| — |M|. Then M has k
vertex disjoint augmenting paths. At least one of length < n/k — 1.

Proof: Let E' = M & T, and let H = (V, E’"). Clearly, every vertex in H has at most degree 2 because every
vertex is adjacent to at most one edge of M and one edge of 7. Thus, H is a collection of paths and (even length)
cycles. The cycles are of even length since the edges of the cycle are alternating between two matchings (i.e.,
you can think about the cycle edges as being 2-colorable).

Now, there are k more edges of 7 in M @ T than of M. Every cycle have the same number of edges of
M and T. Thus, a path in H can have at most one more edge of 7 than of M. In such a case, this path is an
augmenting path for M. It follows that there are at least kK augmenting paths for M in H.

As for the claim on the length of the shortest augmenting path, observe that if all these (vertex disjoint)
augmenting paths were of length > n/k then the total number of vertices in H would be at least (n/k + 1)k > n.
A contradiction.]

Theorem 36.3.5. Let M be a matching of maximum weight among matchings of size |M|. Let m be an augment-
ing path for M of maximum weight, and let T be the matching formed by augmenting M using n. Then T is of
maximum weight among matchings of size |M| + 1.

Proof: Let S be a matching of maximum weight among all matchings with [M| + 1 edges. And consider
H=(V,Ma&5F5).

Consider a cycle o in H. The weight y(o, M) (see Eq. (36.1)) must be zero. Indeed, if y(o, M) > 0 then
M @ o is a matching of the same size as M which is heavier than M. A contradiction to the definition of M as
the maximum weight such matching.

Similarly, if y(o, M) < 0 than y(o, S) = —y(o, M) and as such S @ o is heavier than §. A contradiction.

By the same argumentation, if o is a path of even length in the graph H then y(o, M) = 0 by the same
argumentation.

Let Us be all the odd length paths in H that have one edge more in S than in M, and similarly, let U,, be
the odd length paths in H that have one edge more of M than an edge of S.

We know that |Ug| — |Uy| = 1 since S has one more edge than M. Now, consider a path 7 € Ug and a
path 77 € Uy. It must be that y(x, M) + y(n’, M) = 0. Indeed, if y(r, M) + y(n'’,M) > Othen M @ n & n’
would have bigger weight than M while having the same number of edges. Similarly, if y(x, M) +y(n’, M) < 0
(compared to M) then S & m & n” would have the same number of edges as S while being a heavier matching.
A contradiction.

Thus, y(m, M) + y(n’, M) = 0. Thus, we can pair up the paths in Uy to paths in U,,, and the total weight of
such a pair is zero, by the above argumentation. There is only one path u in Ug which is not paired, and it must
be that y(u, M) = w(S) — w(M) (since everything else in H has zero weight as we apply it to M to get S).

This establishes the claim that we can augment M with a single path to get a maximum weight matching of
cardinality |M| + 1. Clearly, this path must be the heaviest augmenting path that exists for M. Otherwise, there
would be a heavier augmenting path o’ for M such that w(M & o’) > w(S). A contradiction to the maximality
of S. []

The above theorem imply that if we always augment along the maximum weight augmenting path, than we
would get the maximum weight matching in the end.

36.4. Maximum Weight Matchings in A Bipartite Graph

Let G = (L UR, E) be the given bipartite graph, with w : E — R be the non-negative weight function. Given
a matching M we define the graph G, to be the directed graph, where if r/ € M, [€ L and r € R then we add
(r =) to E(Gy) with weight a((r — 1)) = w(rl) Similarly, if r/ € E \ M then add the edge (I — r) € E(Gy) to
Gy and set a((I — r)) = —w(rl)

Namely, we direct all the matching edges from right to left, and assign them their weight, and we direct all
other edges from left to right, with their negated weight. Let G,; denote the resulting graph.

An augmenting path 7 in G must have an odd number of edges. Since G is bipartite, 7 must have one
endpoint on the left side and one endpoint on the right side. Observe, that a path 7 in G, has weight a(r) =
—y(7, M).

Let Uy be all the unmatched vertices in L and let Uy be all the unmatched vertices in R.

Thus, what we are looking for is a path 7 in G, starting U, going to U with maximum weight y(sr), namely
with minimum weight a(7).

Lemma 36.4.1. If M is a maximum weight matching with k edges in G, than there is no negative cycle in Gy
where a(-) is the associated weight function.

Proof: Assume for the sake of contradiction that there is a cycle C, and observe that y(C) = —a(C) > 0.
Namely, M @ C is a new matching with bigger weight and the same number of edges. A contradiction to the
maximality of M.]

The algorithm. So, we now can find a maximum weight in the bipartite graph G as follows: Find a maximum
weight matching M with k edges, compute the maximum weight augmenting path for M, apply it, and repeat
till M is maximal.

Thus, we need to find a minimum weight path in G, between U, and Uy (because we flip weights). This is
just computing a shortest path in the graph G, which does not have negative cycles, and this can just be done
by using the Bellman-Ford algorithm. Indeed, collapse all the vertices of U, into a single vertex, and all the
uncovered vertices of Ug into a single vertex. Let H), be the resulting graph. Clearly, we are looking for the
shortest path between the two vertices corresponding to U; and Uy in Hy, and since this graph has no negative
cycles, this can be done using the Bellman-Ford algorithm, which takes O(nm) time. We conclude:

Lemma 36.4.2. Given a bipartite graph G and a maximum weight matching M of size k one can find a maxi-
mum weight augmenting path for G in O(nm) time, where n is the number of vertices of G and m is the number
of edges.

We need to apply this algorithm n/2 times at most, as such, we get:

Theorem 36.4.3. Given a weight bipartite graph G, with n vertices and m edges, one can compute a maximum
weight matching in G in O(n*m) time.

36.4.1. Faster Algorithm

It turns out, in fact, that the graph here is very special, and one can use the Dijkstra algorithm. We omit any
further details, and just state the result. The interested student can figure out the details (warning: this is not

easy).

Theorem 36.4.4. Given a weight bipartite graph G, with n vertices and m edges, one can compute a maximum
weight matching in G in O(n(nlogn + m)) time.

36.5. The Bellman-Ford Algorithm - A Quick Reminder

The Bellman-Ford algorithm computes the shortest path from a single source s in a graph G that has no
negative cycles to all the vertices in the graph. Here G has n vertices and m edges. The algorithm works by
initializing all distances to the source to be co (formally, for all u € V(G), we set d[u] < oo and d[s] « 0).
Then, it n times scans all the edges, and for every edge (u — v) € E(G) it performs a Relax(u, v) operation.
The relax operation checks if x = d[u] + w((u - v)) < d[v], and if so, it updates d[v] to x, where d[u] denotes
the current distance from s to u. Since Relax(u, v) operation can be performed in constant time, and we scan
all the edges n times, it follows that the overall running time is O(mn).

We claim that in the end of the execution of the algorithm the shortest path length from s to u is d[u], for
all u € V(G). Indeed, every time we scan the edges, we set at least one vertex distance to its final value (which
is its shortest path length). More formally, all vertices that their shortest path to s have i edges, are being set to
their shortest path length in the ith iteration of the algorithm, as can be easily proved by induction. This implies
the claim.

Notice, that if we want to detect negative cycles, we can ran Bellman-Ford for an additional iteration. If
the distances changes, we know that there is a negative cycle somewhere in the graph.

	Matchings
	Definitions
	Unweighted matching in a bipartite graph
	Matchings and Alternating Paths
	Maximum Weight Matchings in A Bipartite Graph
	Faster Algorithm

	The Bellman-Ford Algorithm - A Quick Reminder

